Mixed finite element method for multi-layer elastic contact systems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhizhuo Zhang , Mikaël Barboteu , Xiaobing Nie , Serge Dumont , Mahmoud Abdel-Aty , Jinde Cao
{"title":"Mixed finite element method for multi-layer elastic contact systems","authors":"Zhizhuo Zhang ,&nbsp;Mikaël Barboteu ,&nbsp;Xiaobing Nie ,&nbsp;Serge Dumont ,&nbsp;Mahmoud Abdel-Aty ,&nbsp;Jinde Cao","doi":"10.1016/j.cam.2024.116281","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of multi-layer elastic systems in the field of engineering mechanics, the corresponding variational inequality theory and algorithm design have received more attention and research. In this study, a class of equivalent saddle point problems with interlayer Tresca friction conditions and the mixed finite element method are proposed and analyzed. Then, the convergence of the numerical solution of the mixed finite element method is theoretically proven, and the corresponding algebraic dual algorithm is provided. Finally, through numerical experiments, the mixed finite element method is not only compared with the layer decomposition method, but also its convergence relationship with respect to the spatial discretization parameter <span><math><mi>H</mi></math></span> is verified.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of multi-layer elastic systems in the field of engineering mechanics, the corresponding variational inequality theory and algorithm design have received more attention and research. In this study, a class of equivalent saddle point problems with interlayer Tresca friction conditions and the mixed finite element method are proposed and analyzed. Then, the convergence of the numerical solution of the mixed finite element method is theoretically proven, and the corresponding algebraic dual algorithm is provided. Finally, through numerical experiments, the mixed finite element method is not only compared with the layer decomposition method, but also its convergence relationship with respect to the spatial discretization parameter H is verified.

多层弹性接触系统的混合有限元法
随着多层弹性系统在工程力学领域的发展,相应的变分不等式理论和算法设计得到了更多的关注和研究。本研究提出并分析了一类具有层间 Tresca 摩擦条件的等效鞍点问题和混合有限元法。然后,从理论上证明了混合有限元法数值解的收敛性,并提供了相应的代数对偶算法。最后,通过数值实验,不仅比较了混合有限元法与层分解法,还验证了其与空间离散参数 H 的收敛关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信