A new space transformed finite element method for elliptic interface problems in Rn

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Raghunath Bandha, Rajen Kumar Sinha
{"title":"A new space transformed finite element method for elliptic interface problems in Rn","authors":"Raghunath Bandha,&nbsp;Rajen Kumar Sinha","doi":"10.1016/j.cam.2024.116277","DOIUrl":null,"url":null,"abstract":"<div><p>Interface problems, where distinct materials or physical domains meet, pose significant challenges in numerical simulations due to the discontinuities and sharp gradients across interfaces. Traditional finite element methods struggle to capture such behavior accurately. A new space transformed finite element method (ST-FEM) is developed for solving elliptic interface problems in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. A homeomorphic stretching transformation is introduced to obtain an equivalent problem in the transformed domain which can be solved easily, and the solution can be projected back to original domain by the inverse transformation. Compared with the existing methods, this new scheme has capability of handling discontinuities across the interface. The proposed approach has advantages in circumventing interface approximation properties and reducing the degree of freedom. We initially develop ST-FEM for elliptic problems and subsequently expand upon this concept to address elliptic interface problems. We prove optimal a priori error estimates in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norms, and quasi-optimal error estimate for the maximum norm. Finally, numerical experiments demonstrate the superior accuracy and convergence properties of the ST-FEM when compared to the standard finite element method. The interface is assumed to be a <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-sphere, nevertheless, our analysis can cover symmetric domains such as an ellipsoid or a cylinder.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Interface problems, where distinct materials or physical domains meet, pose significant challenges in numerical simulations due to the discontinuities and sharp gradients across interfaces. Traditional finite element methods struggle to capture such behavior accurately. A new space transformed finite element method (ST-FEM) is developed for solving elliptic interface problems in Rn. A homeomorphic stretching transformation is introduced to obtain an equivalent problem in the transformed domain which can be solved easily, and the solution can be projected back to original domain by the inverse transformation. Compared with the existing methods, this new scheme has capability of handling discontinuities across the interface. The proposed approach has advantages in circumventing interface approximation properties and reducing the degree of freedom. We initially develop ST-FEM for elliptic problems and subsequently expand upon this concept to address elliptic interface problems. We prove optimal a priori error estimates in the H1 and L2 norms, and quasi-optimal error estimate for the maximum norm. Finally, numerical experiments demonstrate the superior accuracy and convergence properties of the ST-FEM when compared to the standard finite element method. The interface is assumed to be a (n1)-sphere, nevertheless, our analysis can cover symmetric domains such as an ellipsoid or a cylinder.

Rn 中椭圆界面问题的新空间变换有限元法
界面问题,即不同材料或物理域相遇的地方,由于界面上的不连续性和急剧梯度,给数值模拟带来了巨大挑战。传统的有限元方法难以准确捕捉这种行为。本文开发了一种新的空间变换有限元方法(ST-FEM),用于求解 Rn 中的椭圆界面问题。该方法引入了同构拉伸变换,从而在变换域中得到一个等效问题,该等效问题可以轻松求解,并且求解结果可以通过反变换投影回原始域。与现有方法相比,这一新方案具有处理跨界面不连续性的能力。所提出的方法在规避界面逼近特性和降低自由度方面具有优势。我们最初为椭圆问题开发了 ST-FEM,随后将这一概念扩展到椭圆界面问题。我们证明了 H1 和 L2 规范的最优先验误差估计,以及最大规范的准最优误差估计。最后,数值实验证明,与标准有限元方法相比,ST-FEM 具有更高的精度和收敛性。我们假设界面是一个 (n-1)- 球体,然而,我们的分析可以涵盖对称域,如椭圆体或圆柱体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信