{"title":"Incompressible limit of the compressible magnetohydrodynamic equations with ill-prepared data in a perfectly conducting container","authors":"Xiao Wang, Xin Xu","doi":"10.1016/j.nonrwa.2024.104207","DOIUrl":null,"url":null,"abstract":"<div><p>We study the low Mach number limit of the compressible magnetohydrodynamic equations in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> with ill-prepared initial data. The velocity field satisfies the Navier-slip boundary conditions and the magnetic field satisfies the perfectly conducting boundary conditions. By performing energy estimate in the conormal Sobolev space and proving the maximum principle to the equations satisfied by <span><math><mrow><mo>(</mo><mo>∇</mo><mo>×</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>,</mo><mo>∇</mo><mo>×</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>)</mo></mrow></math></span>, we overcome the difficulties caused by the simultaneous occurrence of fast oscillation and boundary layer. As a consequence, the uniform existence and the convergence of solutions are obtained.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001469","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the low Mach number limit of the compressible magnetohydrodynamic equations in a bounded domain with ill-prepared initial data. The velocity field satisfies the Navier-slip boundary conditions and the magnetic field satisfies the perfectly conducting boundary conditions. By performing energy estimate in the conormal Sobolev space and proving the maximum principle to the equations satisfied by , we overcome the difficulties caused by the simultaneous occurrence of fast oscillation and boundary layer. As a consequence, the uniform existence and the convergence of solutions are obtained.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.