Treatment of water extract of green tea during kale cultivation using a home vertical farming appliance conveyed catechins into kale and elevated glucosinolate contents
Young-Woong Ju , Su-Hyeon Pyo , So-Won Park , Chae-Ryun Moon , Seul Lee , Mzia Benashvili , Jai-Eok Park , Chu Won Nho , Yang-Ju Son
{"title":"Treatment of water extract of green tea during kale cultivation using a home vertical farming appliance conveyed catechins into kale and elevated glucosinolate contents","authors":"Young-Woong Ju , Su-Hyeon Pyo , So-Won Park , Chae-Ryun Moon , Seul Lee , Mzia Benashvili , Jai-Eok Park , Chu Won Nho , Yang-Ju Son","doi":"10.1016/j.crfs.2024.100852","DOIUrl":null,"url":null,"abstract":"<div><p>The growing interest in healthy diets has driven the demand for food ingredients with enhanced health benefits. In this study, we aimed to explore a method to enhance the bioactivity of kale using a home vertical farming appliance. Specifically, we investigated the effects of treating kale with a green tea water extract (GTE; 0.1–0.5 g/L in nutrient solution) for two weeks before harvest during five weeks of kale cultivation. GTE treatment did not negatively affect the key quality attributes, such as yield, semblance, or sensory properties. However, it led to the accumulation of bioactive compounds, epicatechin (EC) and epigallocatechin gallate (EGCG), which are typically absent in kale. In the control group, no catechins were detected, whereas in the GTE-treated group, the concentration of EC and EGCG were as high as 252.11 and 173.26 μg/g, respectively. These findings indicate the successful incorporation of catechins, known for their unique health-promoting properties, into kale. Additionally, GTE treatment enhanced the biosynthesis of glucosinolates, which are key secondary metabolites of kale. The total glucosinolate content increased from 9.56 μmol/g in the control group to 16.81 μmol/g in the GTE-treated group (treated with 0.5 g/L GTE). These findings showed that GTE treatment not only enriched kale with catechins, the primary bioactive compounds in green tea but also increased the levels of glucosinolates. This study, conducted using a home vertical farming appliance, suggests that bioactivity-enhanced kale can be grown domestically, providing consumers with a nutrient-fortified food source.</p></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"9 ","pages":"Article 100852"},"PeriodicalIF":6.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665927124001783/pdfft?md5=e59071e170c8d933d7cd7f05e7a78944&pid=1-s2.0-S2665927124001783-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927124001783","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The growing interest in healthy diets has driven the demand for food ingredients with enhanced health benefits. In this study, we aimed to explore a method to enhance the bioactivity of kale using a home vertical farming appliance. Specifically, we investigated the effects of treating kale with a green tea water extract (GTE; 0.1–0.5 g/L in nutrient solution) for two weeks before harvest during five weeks of kale cultivation. GTE treatment did not negatively affect the key quality attributes, such as yield, semblance, or sensory properties. However, it led to the accumulation of bioactive compounds, epicatechin (EC) and epigallocatechin gallate (EGCG), which are typically absent in kale. In the control group, no catechins were detected, whereas in the GTE-treated group, the concentration of EC and EGCG were as high as 252.11 and 173.26 μg/g, respectively. These findings indicate the successful incorporation of catechins, known for their unique health-promoting properties, into kale. Additionally, GTE treatment enhanced the biosynthesis of glucosinolates, which are key secondary metabolites of kale. The total glucosinolate content increased from 9.56 μmol/g in the control group to 16.81 μmol/g in the GTE-treated group (treated with 0.5 g/L GTE). These findings showed that GTE treatment not only enriched kale with catechins, the primary bioactive compounds in green tea but also increased the levels of glucosinolates. This study, conducted using a home vertical farming appliance, suggests that bioactivity-enhanced kale can be grown domestically, providing consumers with a nutrient-fortified food source.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.