Zizhao Chen , Pingping Feng , Ruqi Wang , Dongmin Chen , Chunmei Feng , Qishu Jin , Chen Yang , Botao Song
{"title":"Bioinspired shape-changing nanofiber dressings for intelligent wrapping and promoting healing of superficial wounds","authors":"Zizhao Chen , Pingping Feng , Ruqi Wang , Dongmin Chen , Chunmei Feng , Qishu Jin , Chen Yang , Botao Song","doi":"10.1016/j.colsurfb.2024.114246","DOIUrl":null,"url":null,"abstract":"<div><p>The use of dressings in clinical settings is common for the purpose of wound wrapping and creating an optimal microenvironment to enhance the healing process. Proper coverage of wounds with dressings serves as the fundamental basis for effective wound healing. Unfortunately, non-standard coverage by hands can cause pain and secondary damage to patients, while slow manual application during treatment of extensive burns may increase the risk of wound infection. Herein, drawing inspiration from the microstructure and hygroscopic deformation observed in pine cones, we propose a polyvinyl alcohol/polysulfone (PVA/PSF) smart dressing. This bioinspired smart dressing exhibits rapid bending deformation under high moisture condition, allowing easy adjustment of bending amplitude, speed, and direction. Moreover, the smart dressing is capable of rapid bending and autonomous wrapping around “artificial wounds” on a doll’s body, as well as fitting irregularly shaped “hand wounds” and extensive “arm wounds” on human subjects. By integrating two layers into one dressing design, we endow it with dual functionality: The hygroscopic PVA layer facilitates transversal liquid transport to effectively reduce exudate accumulation in the wound bed while maintaining proper moisture levels; meanwhile, the highly hydrophobic PSF layer repels various aqueous solutions to protect against external contaminants. <em>In vivo</em> results confirm that this multifunctional smart dressing promotes collagen synthesis and accelerates angiogenesis for accelerated wound healing. We believe that this innovative multifunctional approach to wound management will provide valuable insights into wound healing therapy.</p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"Article 114246"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524005058","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of dressings in clinical settings is common for the purpose of wound wrapping and creating an optimal microenvironment to enhance the healing process. Proper coverage of wounds with dressings serves as the fundamental basis for effective wound healing. Unfortunately, non-standard coverage by hands can cause pain and secondary damage to patients, while slow manual application during treatment of extensive burns may increase the risk of wound infection. Herein, drawing inspiration from the microstructure and hygroscopic deformation observed in pine cones, we propose a polyvinyl alcohol/polysulfone (PVA/PSF) smart dressing. This bioinspired smart dressing exhibits rapid bending deformation under high moisture condition, allowing easy adjustment of bending amplitude, speed, and direction. Moreover, the smart dressing is capable of rapid bending and autonomous wrapping around “artificial wounds” on a doll’s body, as well as fitting irregularly shaped “hand wounds” and extensive “arm wounds” on human subjects. By integrating two layers into one dressing design, we endow it with dual functionality: The hygroscopic PVA layer facilitates transversal liquid transport to effectively reduce exudate accumulation in the wound bed while maintaining proper moisture levels; meanwhile, the highly hydrophobic PSF layer repels various aqueous solutions to protect against external contaminants. In vivo results confirm that this multifunctional smart dressing promotes collagen synthesis and accelerates angiogenesis for accelerated wound healing. We believe that this innovative multifunctional approach to wound management will provide valuable insights into wound healing therapy.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.