{"title":"Improving hypercrosslinked polymer CO2/N2 selective separation through tuning polymer's porous properties: Optimization using RSM-BBD","authors":"Forough Bahmei , Alireza Hemmati , Ahad Ghaemi , Maryam Bahreini","doi":"10.1016/j.jcou.2024.102926","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effect of synthesis and operating parameters on the adsorption of CO<sub>2</sub> and N<sub>2</sub> and the CO<sub>2</sub>/N<sub>2</sub> selectivity of a hypercrosslinked adsorbent based on waste-expanded polystyrene. Six factors were examined, including synthesis time, crosslinker and catalyst amounts, adsorption temperature and pressure, and CO<sub>2</sub> percentage in the mixture. The response surface methodology (RSM) and ideal adsorbed solution theory (IAST) were employed to design the experiment. After synthesizing 19 adsorbents under different conditions, characterization tests were conducted. Results indicate that the specific surface area and micropore volume initially increase and then decrease with increased synthesis time, crosslinker, and catalyst amounts. The highest specific surface area and micropore volume were 803.84 m<sup>2</sup>/g and 0.1355 cm<sup>3</sup>/g, respectively. CO<sub>2</sub>/N<sub>2</sub> selectivity and the adsorption of CO<sub>2</sub> and N<sub>2</sub> also increase and decrease with increased synthesis parameters. Furthermore, it was observed that CO<sub>2</sub> adsorption and CO<sub>2</sub>/N<sub>2</sub> selectivity increased with an increase in pressure and CO<sub>2</sub> percentage and a decrease in temperature, while N<sub>2</sub> adsorption decreased. The adsorbents were optimized using RSM to maximize CO<sub>2</sub> adsorption and CO<sub>2</sub>/N<sub>2</sub> selectivity with a target of 15 % CO<sub>2</sub> in the gas mixture. The optimal synthesis parameters for the hypercrosslinked adsorbent, including synthesis time, crosslinker, and catalyst amounts, were determined to be approximately 13 hours, 30 mmol, and 30 mmol, respectively. Under optimal conditions for flue gas applications (CO<sub>2</sub>:N<sub>2</sub>/15:85), the adsorbent demonstrated a CO<sub>2</sub>/N<sub>2</sub> selectivity of 11.05, making it suitable for flue gas capture.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"88 ","pages":"Article 102926"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002610/pdfft?md5=6b8000b7728c8bbfa91234aa2a0820b7&pid=1-s2.0-S2212982024002610-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024002610","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effect of synthesis and operating parameters on the adsorption of CO2 and N2 and the CO2/N2 selectivity of a hypercrosslinked adsorbent based on waste-expanded polystyrene. Six factors were examined, including synthesis time, crosslinker and catalyst amounts, adsorption temperature and pressure, and CO2 percentage in the mixture. The response surface methodology (RSM) and ideal adsorbed solution theory (IAST) were employed to design the experiment. After synthesizing 19 adsorbents under different conditions, characterization tests were conducted. Results indicate that the specific surface area and micropore volume initially increase and then decrease with increased synthesis time, crosslinker, and catalyst amounts. The highest specific surface area and micropore volume were 803.84 m2/g and 0.1355 cm3/g, respectively. CO2/N2 selectivity and the adsorption of CO2 and N2 also increase and decrease with increased synthesis parameters. Furthermore, it was observed that CO2 adsorption and CO2/N2 selectivity increased with an increase in pressure and CO2 percentage and a decrease in temperature, while N2 adsorption decreased. The adsorbents were optimized using RSM to maximize CO2 adsorption and CO2/N2 selectivity with a target of 15 % CO2 in the gas mixture. The optimal synthesis parameters for the hypercrosslinked adsorbent, including synthesis time, crosslinker, and catalyst amounts, were determined to be approximately 13 hours, 30 mmol, and 30 mmol, respectively. Under optimal conditions for flue gas applications (CO2:N2/15:85), the adsorbent demonstrated a CO2/N2 selectivity of 11.05, making it suitable for flue gas capture.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.