{"title":"Mitigation of methylglyoxal-induced hepatotoxicity by Boerhavia diffusa L. aerial extract: Insights from cellular and animal models","authors":"Debrupa Dutta , Nikita Khandelwal , Ashutosh Behera , Snehal Dongare , Bireswar Bhattacharya , Soumi Sukla","doi":"10.1016/j.prenap.2024.100088","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><em>Boerhavia diffusa</em> (Punarnava), is a perennial herb with a long-standing reputation for its antioxidative and anti-inflammatory properties, dating back to ancient times. Methylglyoxal is an advanced glycation end-product, known to be toxic in liver cell line as well as in mice model. Our objective is to illustrate the protective action of punarnava aerial extracts in methylglyoxal-induced hepatotoxicity in cell line and mice model.</p></div><div><h3>Methods</h3><p>Punarnava aerial parts were collected and different solvent extracts were prepared in methanol, dichloromethane and hexane by maceration followed by their LCMS/MS characterization, determination of total phenolic, total flavonoid contents and antioxidant activity by DPPH reagent. Cell viability of the extracts and methylglyoxal was assessed using different cell lines. <em>In vitro</em> protective effect of punarnava methanolic extract (PME) against methylglyoxal was evaluated by cell migration assay, NO and ROS production assays and Oil Red O staining in HepG2 cell line. BALB/c mice were pretreated with Punarnava methanolic extract (200 mg/kg and 400 mg/kg) for seven days followed by 290 mg/kg methylglyoxal administration for 6 hrs to induce hepatotoxicity. Serum glucose, AST, ALT, ALP and GSH level were checked and liver histopathological damages were identified.</p></div><div><h3>Results</h3><p>Among the three Punarnava extracts, PME possessed maximum antioxidant, total phenolic and flavonoid content as well as least cytotoxic to liver cell line. Methylglyoxal showed maximum toxicity in HepG2 cells with IC<sub>50</sub> (50 % inhibitory concentration) 3 µM. PME confers protection against methylglyoxal-induced cytotoxicity by decreasing ROS, promoting cell migration and preventing loss of cell viability. No significant change was observed in NO production and Oil Red O staining. PME-treated mice showed decrease in liver ALP levels and glucose with intact cellular morphology compared to hepatocyte steatosis and nuclear degeneration in methylglyoxal-treated group.</p></div><div><h3>Discussions</h3><p>Indigenous herb Punarnava is effective in protecting liver cells from damage induced by the glycolytic byproduct, methylglyoxal.</p></div>","PeriodicalId":101014,"journal":{"name":"Pharmacological Research - Natural Products","volume":"5 ","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Research - Natural Products","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950199724000764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Boerhavia diffusa (Punarnava), is a perennial herb with a long-standing reputation for its antioxidative and anti-inflammatory properties, dating back to ancient times. Methylglyoxal is an advanced glycation end-product, known to be toxic in liver cell line as well as in mice model. Our objective is to illustrate the protective action of punarnava aerial extracts in methylglyoxal-induced hepatotoxicity in cell line and mice model.
Methods
Punarnava aerial parts were collected and different solvent extracts were prepared in methanol, dichloromethane and hexane by maceration followed by their LCMS/MS characterization, determination of total phenolic, total flavonoid contents and antioxidant activity by DPPH reagent. Cell viability of the extracts and methylglyoxal was assessed using different cell lines. In vitro protective effect of punarnava methanolic extract (PME) against methylglyoxal was evaluated by cell migration assay, NO and ROS production assays and Oil Red O staining in HepG2 cell line. BALB/c mice were pretreated with Punarnava methanolic extract (200 mg/kg and 400 mg/kg) for seven days followed by 290 mg/kg methylglyoxal administration for 6 hrs to induce hepatotoxicity. Serum glucose, AST, ALT, ALP and GSH level were checked and liver histopathological damages were identified.
Results
Among the three Punarnava extracts, PME possessed maximum antioxidant, total phenolic and flavonoid content as well as least cytotoxic to liver cell line. Methylglyoxal showed maximum toxicity in HepG2 cells with IC50 (50 % inhibitory concentration) 3 µM. PME confers protection against methylglyoxal-induced cytotoxicity by decreasing ROS, promoting cell migration and preventing loss of cell viability. No significant change was observed in NO production and Oil Red O staining. PME-treated mice showed decrease in liver ALP levels and glucose with intact cellular morphology compared to hepatocyte steatosis and nuclear degeneration in methylglyoxal-treated group.
Discussions
Indigenous herb Punarnava is effective in protecting liver cells from damage induced by the glycolytic byproduct, methylglyoxal.