Nonlinear performance analysis and rapid prediction of out-of-plane deformation in graded honeycombs

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
{"title":"Nonlinear performance analysis and rapid prediction of out-of-plane deformation in graded honeycombs","authors":"","doi":"10.1016/j.tws.2024.112456","DOIUrl":null,"url":null,"abstract":"<div><p>Honeycomb structures, known for their excellent properties, are widely used in various advanced applications, including adaptive mirrors and soft wearable devices, due to their out-of-plane deformation capabilities. However, predicting the out-of-plane deformation of graded honeycombs remains challenging. A novel approach for rapidly predicting the out-of-plane deformation of graded honeycombs, considering their isotropic and nonlinear behavior, is presented in this study. Discrete material property spaces for seven honeycomb types were derived using a stiffness-updating nonlinear homogenization method and validated through digital image correlation (DIC) experiments. Prediction of nonlinear equivalent properties within two seconds was achieved by utilizing a hyperparameter optimization neural network (HONN). Graded honeycomb connection criteria (GHCC) were established to ensure performance stability. A rapid and accurate prediction method was enabled by the developed deformation-to-color mapping, which effectively bypasses costly numerical computations. Out-of-plane deformation is accurately forecasted by this approach, which also facilitates the transformation of flat surfaces into various shapes with distinct Gaussian curvatures, thereby opening new possibilities for large-scale deformable structures.</p></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124008978","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Honeycomb structures, known for their excellent properties, are widely used in various advanced applications, including adaptive mirrors and soft wearable devices, due to their out-of-plane deformation capabilities. However, predicting the out-of-plane deformation of graded honeycombs remains challenging. A novel approach for rapidly predicting the out-of-plane deformation of graded honeycombs, considering their isotropic and nonlinear behavior, is presented in this study. Discrete material property spaces for seven honeycomb types were derived using a stiffness-updating nonlinear homogenization method and validated through digital image correlation (DIC) experiments. Prediction of nonlinear equivalent properties within two seconds was achieved by utilizing a hyperparameter optimization neural network (HONN). Graded honeycomb connection criteria (GHCC) were established to ensure performance stability. A rapid and accurate prediction method was enabled by the developed deformation-to-color mapping, which effectively bypasses costly numerical computations. Out-of-plane deformation is accurately forecasted by this approach, which also facilitates the transformation of flat surfaces into various shapes with distinct Gaussian curvatures, thereby opening new possibilities for large-scale deformable structures.

蜂窝结构以其优异的性能而著称,由于其平面外变形能力,被广泛应用于自适应反射镜和软性可穿戴设备等各种先进领域。然而,预测分级蜂窝的平面外变形仍然具有挑战性。考虑到各向同性和非线性行为,本研究提出了一种快速预测分级蜂窝平面外变形的新方法。采用刚度更新非线性均质化方法得出了七种蜂窝类型的离散材料属性空间,并通过数字图像相关(DIC)实验进行了验证。利用超参数优化神经网络(HONN)在两秒内实现了非线性等效特性的预测。建立了分级蜂窝连接标准(GHCC),以确保性能的稳定性。所开发的变形-颜色映射技术有效地绕过了昂贵的数值计算,从而实现了快速、准确的预测方法。这种方法能准确预测平面外变形,还能将平面转化为具有不同高斯曲率的各种形状,从而为大规模可变形结构开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信