Resilience of socio-technical transportation systems: A demand-driven community detection in human mobility structures

IF 6.3 1区 工程技术 Q1 ECONOMICS
{"title":"Resilience of socio-technical transportation systems: A demand-driven community detection in human mobility structures","authors":"","doi":"10.1016/j.tra.2024.104244","DOIUrl":null,"url":null,"abstract":"<div><p>Existing scholarship on transportation resilience analysis has primarily focused on engineering resilience, often overlooking the intricate socio-technical dimensions. This oversight underscores the necessity for a more comprehensive understanding of the dynamic interplay between social, including travel behaviors, and technical infrastructure components within transportation systems. This article delves into the impact of “social shocks” on transportation systems, which are defined as disturbances affecting the social subsystem without yet affecting the technical subsystem. Drawing inspiration from C.S. Holling’s ecological resilience, which signifies a system’s ability to cope with change by adapting its structure and functionality, we propose a multi-level resilience assessment framework. It encompasses four mobility-related indicators: entropy (measuring network-level complexity), stationarity (assessing community compositional changes at the cluster level), and two node-level metrics — within-module degree and weighted participation coefficient — capturing location connectivity. These indicators proxy for evaluating the mobility structure and node functionality within the social subsystem. In a case study, we analyze historical smart card data to examine the mobility pattern’s structural changes within Hong Kong, a rail-oriented metropolis, during a prolonged and city-wide protest. The framework and associated indicators provide an alternative perspective for transit planners and operators, allowing them to assess both the overall system and individual stations, moving beyond traditional assessments of service supply and patronage changes.</p></div>","PeriodicalId":49421,"journal":{"name":"Transportation Research Part A-Policy and Practice","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part A-Policy and Practice","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965856424002921","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Existing scholarship on transportation resilience analysis has primarily focused on engineering resilience, often overlooking the intricate socio-technical dimensions. This oversight underscores the necessity for a more comprehensive understanding of the dynamic interplay between social, including travel behaviors, and technical infrastructure components within transportation systems. This article delves into the impact of “social shocks” on transportation systems, which are defined as disturbances affecting the social subsystem without yet affecting the technical subsystem. Drawing inspiration from C.S. Holling’s ecological resilience, which signifies a system’s ability to cope with change by adapting its structure and functionality, we propose a multi-level resilience assessment framework. It encompasses four mobility-related indicators: entropy (measuring network-level complexity), stationarity (assessing community compositional changes at the cluster level), and two node-level metrics — within-module degree and weighted participation coefficient — capturing location connectivity. These indicators proxy for evaluating the mobility structure and node functionality within the social subsystem. In a case study, we analyze historical smart card data to examine the mobility pattern’s structural changes within Hong Kong, a rail-oriented metropolis, during a prolonged and city-wide protest. The framework and associated indicators provide an alternative perspective for transit planners and operators, allowing them to assess both the overall system and individual stations, moving beyond traditional assessments of service supply and patronage changes.

社会技术交通系统的复原力:人类流动结构中的需求驱动型社区检测
现有的交通复原力分析学术研究主要集中在工程复原力方面,往往忽略了错综复杂的社会技术层面。这种忽视凸显了更全面地理解交通系统中社会(包括出行行为)与技术基础设施组件之间动态相互作用的必要性。本文深入探讨了 "社会冲击 "对交通系统的影响,"社会冲击 "被定义为影响社会子系统但尚未影响技术子系统的干扰。霍林(C.S. Holling)的生态复原力是指一个系统通过调整其结构和功能来应对变化的能力,受此启发,我们提出了一个多层次复原力评估框架。它包括四个与流动性相关的指标:熵(衡量网络层面的复杂性)、静止性(评估群集层面的群落组成变化),以及两个节点层面的指标--模块内程度和加权参与系数--捕捉位置连接性。这些指标代表了对社会子系统内流动结构和节点功能的评估。在一个案例研究中,我们分析了智能卡历史数据,以研究香港这个以铁路为导向的大都市在一次长期的全城抗议活动中流动模式的结构变化。该框架和相关指标为公交规划者和运营商提供了另一种视角,使他们能够评估整体系统和单个车站,超越了对服务供应和乘客量变化的传统评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.20
自引率
7.80%
发文量
257
审稿时长
9.8 months
期刊介绍: Transportation Research: Part A contains papers of general interest in all passenger and freight transportation modes: policy analysis, formulation and evaluation; planning; interaction with the political, socioeconomic and physical environment; design, management and evaluation of transportation systems. Topics are approached from any discipline or perspective: economics, engineering, sociology, psychology, etc. Case studies, survey and expository papers are included, as are articles which contribute to unification of the field, or to an understanding of the comparative aspects of different systems. Papers which assess the scope for technological innovation within a social or political framework are also published. The journal is international, and places equal emphasis on the problems of industrialized and non-industrialized regions. Part A''s aims and scope are complementary to Transportation Research Part B: Methodological, Part C: Emerging Technologies and Part D: Transport and Environment. Part E: Logistics and Transportation Review. Part F: Traffic Psychology and Behaviour. The complete set forms the most cohesive and comprehensive reference of current research in transportation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信