Oriented supersingular elliptic curves and Eichler orders of prime level

IF 1.2 3区 数学 Q1 MATHEMATICS
Guanju Xiao , Zijian Zhou , Longjiang Qu
{"title":"Oriented supersingular elliptic curves and Eichler orders of prime level","authors":"Guanju Xiao ,&nbsp;Zijian Zhou ,&nbsp;Longjiang Qu","doi":"10.1016/j.ffa.2024.102501","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>p</mi><mo>&gt;</mo><mn>3</mn></math></span> be a prime and <em>E</em> be a supersingular elliptic curve defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. Let <em>c</em> be a prime with <span><math><mi>c</mi><mo>&lt;</mo><mn>3</mn><mi>p</mi><mo>/</mo><mn>16</mn></math></span> and <em>G</em> be a subgroup of <span><math><mi>E</mi><mo>[</mo><mi>c</mi><mo>]</mo></math></span> of order <em>c</em>. The pair <span><math><mo>(</mo><mi>E</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> is called a supersingular elliptic curve with level-<em>c</em> structure, and the endomorphism ring <span><math><mtext>End</mtext><mo>(</mo><mi>E</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> is isomorphic to an Eichler order with level <em>c</em>. We construct two kinds of Eichler orders <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> with level <em>c</em>. Interestingly, we prove that each <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> or <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> can represent a primitive reduced binary quadratic form with discriminant <span><math><mo>−</mo><mn>16</mn><mi>c</mi><mi>p</mi></math></span> or <span><math><mo>−</mo><mi>c</mi><mi>p</mi></math></span> respectively. If a curve <em>E</em> is <span><math><mi>Z</mi><mo>[</mo><msqrt><mrow><mo>−</mo><mi>c</mi><mi>p</mi></mrow></msqrt><mo>]</mo></math></span>-oriented or <span><math><mi>Z</mi><mo>[</mo><mfrac><mrow><mn>1</mn><mo>+</mo><msqrt><mrow><mo>−</mo><mi>c</mi><mi>p</mi></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>-oriented, then we prove that <span><math><mtext>End</mtext><mo>(</mo><mi>E</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> is isomorphic to <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> or <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> respectively. Due to the fact that <span><math><mi>Z</mi><mo>[</mo><msqrt><mrow><mo>−</mo><mi>c</mi><mi>p</mi></mrow></msqrt><mo>]</mo></math></span>-oriented isogenies between <span><math><mi>Z</mi><mo>[</mo><msqrt><mrow><mo>−</mo><mi>c</mi><mi>p</mi></mrow></msqrt><mo>]</mo></math></span>-oriented elliptic curves could be represented by quadratic forms, we show that these isogenies are reflected in the corresponding Eichler orders via the composition law for their corresponding quadratic forms.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"100 ","pages":"Article 102501"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001400","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let p>3 be a prime and E be a supersingular elliptic curve defined over Fp2. Let c be a prime with c<3p/16 and G be a subgroup of E[c] of order c. The pair (E,G) is called a supersingular elliptic curve with level-c structure, and the endomorphism ring End(E,G) is isomorphic to an Eichler order with level c. We construct two kinds of Eichler orders Oc(q,r) and Oc(q,r) with level c. Interestingly, we prove that each Oc(q,r) or Oc(q,r) can represent a primitive reduced binary quadratic form with discriminant 16cp or cp respectively. If a curve E is Z[cp]-oriented or Z[1+cp2]-oriented, then we prove that End(E,G) is isomorphic to Oc(q,r) or Oc(q,r) respectively. Due to the fact that Z[cp]-oriented isogenies between Z[cp]-oriented elliptic curves could be represented by quadratic forms, we show that these isogenies are reflected in the corresponding Eichler orders via the composition law for their corresponding quadratic forms.

有向超星椭圆曲线和素级艾希勒阶
设 p>3 是素数,E 是定义在 Fp2 上的超椭圆曲线。让 c 是 c<3p/16 的素数,G 是 E[c] 的一个阶为 c 的子群。这对 (E,G) 称为具有 c 级结构的超椭圆曲线,其内定环 End(E,G) 与具有 c 级结构的艾希勒阶同构。有趣的是,我们证明了每个 Oc(q,r)或 Oc′(q,r′)可以分别表示一个判别式为 -16cp 或 -cp 的原始还原二元二次型。如果曲线 E 是 Z[-cp]-oriented 或 Z[1+-cp2]-oriented 的,那么我们证明 End(E,G) 分别与 Oc(q,r) 或 Oc′(q,r′)同构。由于 Z[-cp]-oriented 椭圆曲线之间的 Z[-cp]-oriented 同素异形可以用二次型来表示,我们证明了这些同素异形通过相应二次型的组成法则反映在相应的艾希勒阶中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信