{"title":"Black hole evaporation process and Tangherlini–Reissner–Nordström black holes shadow","authors":"Balendra Pratap Singh","doi":"10.1016/j.aop.2024.169803","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the black hole evaporation process and shadow property of the Tangherlini-Reissner-Nordström (TRN) black holes. The TRN black holes are the higher-dimensional extension of the Reissner-Nordström (RN) black holes and are characterized by their mass <span><math><mi>M</mi></math></span>, charge <span><math><mi>q</mi></math></span>, and spacetime dimensions <span><math><mi>D</mi></math></span>. In higher-dimensional spacetime, the black hole evaporation occurs rapidly, causing the black hole’s horizon to shrink. We derive the rate of mass loss for the higher-dimensional charged black hole and investigate the effect of higher-dimensional spacetime on charged black hole shadow. We derive the complete geodesic equations of motion with the effect of spacetime dimensions <span><math><mi>D</mi></math></span>. We determine impact parameters by maximizing the black hole’s effective potential and estimate the critical radius of photon orbits. The photon orbits around the black hole shrink with the effect of the increasing number of spacetime dimensions. To visualize the shadows of the black hole, we derive the celestial coordinates in terms of the black hole parameters. We use the observed results of M87 and Sgr A<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> black hole from the Event Horizon Telescope and estimate the angular diameter of the charge black hole shadow in the higher-dimensional spacetime. We also estimate the energy emission rate of the black hole. Our finding shows that the angular diameter of the black hole shadow decreases with the increasing number of spacetime dimensions <span><math><mi>D</mi></math></span>.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169803"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624002100","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we study the black hole evaporation process and shadow property of the Tangherlini-Reissner-Nordström (TRN) black holes. The TRN black holes are the higher-dimensional extension of the Reissner-Nordström (RN) black holes and are characterized by their mass , charge , and spacetime dimensions . In higher-dimensional spacetime, the black hole evaporation occurs rapidly, causing the black hole’s horizon to shrink. We derive the rate of mass loss for the higher-dimensional charged black hole and investigate the effect of higher-dimensional spacetime on charged black hole shadow. We derive the complete geodesic equations of motion with the effect of spacetime dimensions . We determine impact parameters by maximizing the black hole’s effective potential and estimate the critical radius of photon orbits. The photon orbits around the black hole shrink with the effect of the increasing number of spacetime dimensions. To visualize the shadows of the black hole, we derive the celestial coordinates in terms of the black hole parameters. We use the observed results of M87 and Sgr A black hole from the Event Horizon Telescope and estimate the angular diameter of the charge black hole shadow in the higher-dimensional spacetime. We also estimate the energy emission rate of the black hole. Our finding shows that the angular diameter of the black hole shadow decreases with the increasing number of spacetime dimensions .
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.