{"title":"In-vivo toxicological study of cysteamine modified carbon dots derived from Ruellia simplex on fruit fly for potential bioimaging","authors":"Pratibha Pansari , Surajita Sahu , Monalisa Mishra , Piyush Kumar Gupta , Geeta Durga","doi":"10.1016/j.bcab.2024.103359","DOIUrl":null,"url":null,"abstract":"<div><p>Modern medicine must shift its paradigm from conventional treatment strategies to theranostics to meet individuals' needs. Carbon dots, as a class of fluorescent materials, provide biocompatible and multifunctional solutions for a wide range of applications including clinical sensing, imaging, and drug delivery. Various studies have focused on their synthesis, photophysical properties, and innoxious nature but their potential biomedical applications for the <em>in-vivo</em> toxicity are yet limited. In this work, previously synthesized C-Dots (CDs) were utilized to determine their effect on the development of <em>Drosophila melanogaster</em>. Simultaneously, the genotoxic potential of CDs was evaluated on specific larval cell types that play important roles in immunological defence as well as growth and development. The gut organ toxicity of both CDs was studied using DAPI and DCFH-DA dyes wherein RS-CDs didn't show significant toxicity to the concentration 500 μg/mL whereas RS-Cys-CDs showed nuclear fragmentation and modest ROS (reactive oxygen species) production. Subsequently, trypan-blue assay, larvae crawling assay, touch sensitivity, adult phenotype, and survivability assay were performed. The trypan-blue assay shows the non-toxic nature of both CDs even at the concentration of 500 μg/mL. The high concentrations of RS-Cys-CD (500 μg/mL) were further associated with the alteration in touch behaviour and decrease in pupa hatching. <em>In-vivo and ex-vivo</em> fluorescence assessment of both the CDs exhibit bright fluorescence in green and red channels upon excitation at 485 and 577 nm respectively. The prominent imaging results from RS-Cys-CDs highlight the positive impact of surface modification.</p></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818124003438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Modern medicine must shift its paradigm from conventional treatment strategies to theranostics to meet individuals' needs. Carbon dots, as a class of fluorescent materials, provide biocompatible and multifunctional solutions for a wide range of applications including clinical sensing, imaging, and drug delivery. Various studies have focused on their synthesis, photophysical properties, and innoxious nature but their potential biomedical applications for the in-vivo toxicity are yet limited. In this work, previously synthesized C-Dots (CDs) were utilized to determine their effect on the development of Drosophila melanogaster. Simultaneously, the genotoxic potential of CDs was evaluated on specific larval cell types that play important roles in immunological defence as well as growth and development. The gut organ toxicity of both CDs was studied using DAPI and DCFH-DA dyes wherein RS-CDs didn't show significant toxicity to the concentration 500 μg/mL whereas RS-Cys-CDs showed nuclear fragmentation and modest ROS (reactive oxygen species) production. Subsequently, trypan-blue assay, larvae crawling assay, touch sensitivity, adult phenotype, and survivability assay were performed. The trypan-blue assay shows the non-toxic nature of both CDs even at the concentration of 500 μg/mL. The high concentrations of RS-Cys-CD (500 μg/mL) were further associated with the alteration in touch behaviour and decrease in pupa hatching. In-vivo and ex-vivo fluorescence assessment of both the CDs exhibit bright fluorescence in green and red channels upon excitation at 485 and 577 nm respectively. The prominent imaging results from RS-Cys-CDs highlight the positive impact of surface modification.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.