{"title":"Construction risk probability assessment of shield tunneling projects in karst areas based on improved two-dimensional cloud model","authors":"","doi":"10.1016/j.tust.2024.106086","DOIUrl":null,"url":null,"abstract":"<div><p>Tunnel construction in karst areas presents significant risks due to the complex geological environment and inherent uncertainties. Existing risk assessment methods often struggle to adequately capture and quantify these uncertainties, leading to potentially inaccurate evaluations. This study addresses this gap by developing a novel risk assessment system specifically for shield tunnel engineering in karst areas. This system combines a risk index, considering both frequency and consequence dimensions, with four probabilistic models for quantifying risk levels. These models, based on the spatial geometric characteristics of the two-dimensional cloud model, simulate a large number of outcomes of risky decisions under the influence of uncertainties. Applied to the Guiyang Metro Line 3 construction project, the models effectively determined risk levels, with the Comprehensive Cloud Envelope Model (CCEM) demonstrating high precision and the Comprehensive Cloud Oval Model (CCOM) excelling in computational efficiency. Comparative analysis with existing 2D and 1D cloud models highlights the advantages and wider applicability of the proposed methodology for risk evaluation and control in complex geological environments.</p></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779824005042","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tunnel construction in karst areas presents significant risks due to the complex geological environment and inherent uncertainties. Existing risk assessment methods often struggle to adequately capture and quantify these uncertainties, leading to potentially inaccurate evaluations. This study addresses this gap by developing a novel risk assessment system specifically for shield tunnel engineering in karst areas. This system combines a risk index, considering both frequency and consequence dimensions, with four probabilistic models for quantifying risk levels. These models, based on the spatial geometric characteristics of the two-dimensional cloud model, simulate a large number of outcomes of risky decisions under the influence of uncertainties. Applied to the Guiyang Metro Line 3 construction project, the models effectively determined risk levels, with the Comprehensive Cloud Envelope Model (CCEM) demonstrating high precision and the Comprehensive Cloud Oval Model (CCOM) excelling in computational efficiency. Comparative analysis with existing 2D and 1D cloud models highlights the advantages and wider applicability of the proposed methodology for risk evaluation and control in complex geological environments.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.