{"title":"Theoretical study and experimental verification of the viscosities of azeotropic refrigerant R515B","authors":"","doi":"10.1016/j.ijrefrig.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>One essential aspect of the studies on the refrigeration and heat pump technology is to search for new alternative working fluids. Meanwhile, the azeotropic mixtures of hydrofluorocarbons (HFCs)/hydrofluoroolefins (HFOs) have attracted researchers not only in fundamentals research field but also in the industry fields due to its good performance and applicability. Therefore, to promote application research, this study is focused on the characteristics of viscosity for azeotrope R515B, which is widely recognized and studied from the thermodynamic aspect. Hence, the high-pressure density and viscosity in liquid phase of R515B were measured with a vibrating-wire viscosimeter within the temperature range in 253 K to 363 K when pressure changes from 1 MPa to 12 MPa. The combined expended uncertainties with a confidence level of 0.95 (<em>k</em> = 2) of density and viscosity are 0.2 % and 2 %, respectively. In addition, a modified viscosity model is proposed with combining the parameterization method of thermodynamic equation of state (EoS) in previous work and the modified entropy variable as well as reduced viscosity reference term of residual entropy scaling (RES) theory. Furthermore, the systematical comparison results among this model and three benchmark viscosity models available illustrate that the RES model proposed in this research is robust and precise in a wide range of operation condition.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014070072400286X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
One essential aspect of the studies on the refrigeration and heat pump technology is to search for new alternative working fluids. Meanwhile, the azeotropic mixtures of hydrofluorocarbons (HFCs)/hydrofluoroolefins (HFOs) have attracted researchers not only in fundamentals research field but also in the industry fields due to its good performance and applicability. Therefore, to promote application research, this study is focused on the characteristics of viscosity for azeotrope R515B, which is widely recognized and studied from the thermodynamic aspect. Hence, the high-pressure density and viscosity in liquid phase of R515B were measured with a vibrating-wire viscosimeter within the temperature range in 253 K to 363 K when pressure changes from 1 MPa to 12 MPa. The combined expended uncertainties with a confidence level of 0.95 (k = 2) of density and viscosity are 0.2 % and 2 %, respectively. In addition, a modified viscosity model is proposed with combining the parameterization method of thermodynamic equation of state (EoS) in previous work and the modified entropy variable as well as reduced viscosity reference term of residual entropy scaling (RES) theory. Furthermore, the systematical comparison results among this model and three benchmark viscosity models available illustrate that the RES model proposed in this research is robust and precise in a wide range of operation condition.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.