Exploring deep learning models for roadside landslide prediction: Insights and implications from comparative analysis

IF 3 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
{"title":"Exploring deep learning models for roadside landslide prediction: Insights and implications from comparative analysis","authors":"","doi":"10.1016/j.pce.2024.103741","DOIUrl":null,"url":null,"abstract":"<div><p>This study undertakes a comparative analysis of four distinct deep learning models, i.e., Convolutional Neural Network (CNN), Deep Neural Network (DNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM), in the context of roadside landslide prediction, aiming to provide comprehensive insights into their strengths and weaknesses. A geospatial dataset from the Lai Châu province, Vietnam, with thirteen environmental factors (elevation, aspect, slope, curvature, topographic wetness index, stream power index, flow accumulation, geology, normalized difference vegetation index, maximum rainfall, average annual rainfall, and proximity to faults and rivers) and 284 road-along landslides was considered for analysis. Our modeling efforts yielded invaluable insights into the performance of these models during both training and validation phases. The DNN model emerged as the frontrunner in the training phase, boasting the highest area under the curve (AUC) of 0.94, accuracy of 87.47%, kappa of 0.748, and lowest RMSE of 0.125. However, during validation, the CNN model outshone others, exhibiting the highest AUC of 0.88 and overall accuracy of 80.00%. Despite variations in performance metrics across phases, CNN consistently demonstrated robust predictive prowess. The findings of this study underscore the significance of selecting appropriate machine learning models tailored to specific contexts and objectives. Moreover, they contribute valuable insights for decision-makers and researchers alike, ultimately aiming to enhance the safety and resilience of communities inhabiting landslide-prone areas. Moving forward, future research directions may explore ensemble methods, novel architectures, and interpretability techniques to further advance predictive accuracy and applicability in roadside landslide susceptibility modeling.</p></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706524001992","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study undertakes a comparative analysis of four distinct deep learning models, i.e., Convolutional Neural Network (CNN), Deep Neural Network (DNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM), in the context of roadside landslide prediction, aiming to provide comprehensive insights into their strengths and weaknesses. A geospatial dataset from the Lai Châu province, Vietnam, with thirteen environmental factors (elevation, aspect, slope, curvature, topographic wetness index, stream power index, flow accumulation, geology, normalized difference vegetation index, maximum rainfall, average annual rainfall, and proximity to faults and rivers) and 284 road-along landslides was considered for analysis. Our modeling efforts yielded invaluable insights into the performance of these models during both training and validation phases. The DNN model emerged as the frontrunner in the training phase, boasting the highest area under the curve (AUC) of 0.94, accuracy of 87.47%, kappa of 0.748, and lowest RMSE of 0.125. However, during validation, the CNN model outshone others, exhibiting the highest AUC of 0.88 and overall accuracy of 80.00%. Despite variations in performance metrics across phases, CNN consistently demonstrated robust predictive prowess. The findings of this study underscore the significance of selecting appropriate machine learning models tailored to specific contexts and objectives. Moreover, they contribute valuable insights for decision-makers and researchers alike, ultimately aiming to enhance the safety and resilience of communities inhabiting landslide-prone areas. Moving forward, future research directions may explore ensemble methods, novel architectures, and interpretability techniques to further advance predictive accuracy and applicability in roadside landslide susceptibility modeling.

探索路边滑坡预测的深度学习模型:对比分析的启示和影响
本研究以路边滑坡预测为背景,对卷积神经网络(CNN)、深度神经网络(DNN)、循环神经网络(RNN)和长短期记忆(LSTM)这四种不同的深度学习模型进行了比较分析,旨在全面了解它们的优缺点。我们分析了越南赖查省的地理空间数据集,该数据集包含 13 个环境因素(海拔、地势、坡度、曲率、地形湿润指数、溪流动力指数、流量累积、地质、归一化差异植被指数、最大降雨量、年平均降雨量以及与断层和河流的距离)和 284 处公路沿线滑坡。我们的建模工作在训练和验证阶段都对这些模型的性能提出了宝贵的见解。DNN 模型在训练阶段表现突出,曲线下面积(AUC)最高,为 0.94,准确率为 87.47%,kappa 为 0.748,RMSE 最低,为 0.125。不过,在验证过程中,CNN 模型的表现优于其他模型,其 AUC 最高,为 0.88,总体准确率为 80.00%。尽管各阶段的性能指标有所不同,但 CNN 始终表现出强大的预测能力。本研究的发现强调了根据具体情况和目标选择合适的机器学习模型的重要性。此外,它们还为决策者和研究人员提供了有价值的见解,最终旨在提高居住在山体滑坡易发地区的社区的安全性和抗灾能力。展望未来,未来的研究方向可能会探索集合方法、新型架构和可解释性技术,以进一步提高路边滑坡易发性建模的预测准确性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Chemistry of the Earth
Physics and Chemistry of the Earth 地学-地球科学综合
CiteScore
5.40
自引率
2.70%
发文量
176
审稿时长
31.6 weeks
期刊介绍: Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001. Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers. The journal covers the following subject areas: -Solid Earth and Geodesy: (geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy). -Hydrology, Oceans and Atmosphere: (hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology). -Solar-Terrestrial and Planetary Science: (solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信