A novel large stroke, heavy duty, high response (2P(nR)+PPR)P actuator mechanism for parallel wave motion simulator platform

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
{"title":"A novel large stroke, heavy duty, high response (2P(nR)+PPR)P actuator mechanism for parallel wave motion simulator platform","authors":"","doi":"10.1016/j.apor.2024.104227","DOIUrl":null,"url":null,"abstract":"<div><p>Wave motion simulators have various applications in the development of marine industrial products. The main factor limiting its performance to meet the needs for extreme sea states simulation is the lack of large stroke, heavy duty, and high response actuators. Therefore, a novel actuator mechanism is proposed in this paper to realize the dynamic output of large stroke, heavy duty and high response. In this paper, a (2P(nR)+PPR)P actuator mechanism composed of 2P(nR)P and PPRP mechanisms is proposed, with the input-output relationship analyzed. Then, this actuator mechanism is applied to a 6-PUS platform. The Newton-Euler method is employed to model and simulate the dynamics of the platform to verify the input-output relationships. Finally, a 6-PUS platform based on (2P(nR)+PPR)P mechanism was designed, built and tested under extreme operating conditions. The results show that the 6-PUS platform with this actuator mechanism can achieve a large stroke of ±45° within 7 s cycle time and a high response motion of ±30° within 3 s under a heavy duty of 10t, which demonstrates that it has the performance of large stroke, heavy duty and high response. This actuator mechanism and its platform are of significant value in wave motion simulators for extreme sea states.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724003481","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

Wave motion simulators have various applications in the development of marine industrial products. The main factor limiting its performance to meet the needs for extreme sea states simulation is the lack of large stroke, heavy duty, and high response actuators. Therefore, a novel actuator mechanism is proposed in this paper to realize the dynamic output of large stroke, heavy duty and high response. In this paper, a (2P(nR)+PPR)P actuator mechanism composed of 2P(nR)P and PPRP mechanisms is proposed, with the input-output relationship analyzed. Then, this actuator mechanism is applied to a 6-PUS platform. The Newton-Euler method is employed to model and simulate the dynamics of the platform to verify the input-output relationships. Finally, a 6-PUS platform based on (2P(nR)+PPR)P mechanism was designed, built and tested under extreme operating conditions. The results show that the 6-PUS platform with this actuator mechanism can achieve a large stroke of ±45° within 7 s cycle time and a high response motion of ±30° within 3 s under a heavy duty of 10t, which demonstrates that it has the performance of large stroke, heavy duty and high response. This actuator mechanism and its platform are of significant value in wave motion simulators for extreme sea states.

波浪运动模拟器在海洋工业产品开发中有多种应用。限制其性能满足极端海况模拟需求的主要因素是缺乏大行程、重载和高响应的执行器。因此,本文提出了一种新型致动器机构,以实现大行程、重载和高响应的动态输出。本文提出了一种由 2P(nR)P 和 PPRP 机构组成的 (2P(nR)+PPR)P 执行机构,并对其输入输出关系进行了分析。然后,将该传动机构应用于 6-PUS 平台。采用牛顿-欧拉方法对平台的动力学进行建模和仿真,以验证输入输出关系。最后,设计、建造了基于 (2P(nR)+PPR)P 机构的 6-PUS 平台,并在极端运行条件下进行了测试。结果表明,采用该执行机构的 6-PUS 平台可在 7 s 周期时间内实现 ±45° 的大行程,并在 10t 重载条件下实现 3 s 内 ±30° 的高响应运动,证明其具有大行程、重载和高响应的性能。该推杆机构及其平台在极端海况下的波浪运动模拟器中具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信