A Stein characterisation of the distribution of the product of correlated normal random variables

Pub Date : 2024-09-16 DOI:10.1016/j.spl.2024.110269
Robert E. Gaunt, Siqi Li, Heather L. Sutcliffe
{"title":"A Stein characterisation of the distribution of the product of correlated normal random variables","authors":"Robert E. Gaunt,&nbsp;Siqi Li,&nbsp;Heather L. Sutcliffe","doi":"10.1016/j.spl.2024.110269","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain a Stein characterisation of the distribution of the product of two correlated normal random variables with non-zero means, and more generally the distribution of the sum of independent copies of such random variables. Our Stein characterisation is shown to naturally generalise a number of other Stein characterisations in the literature. From our Stein characterisation we derive recursive formulas for the moments of the product of two correlated normal random variables, and more generally the sum of independent copies of such random variables, which allows for efficient computation of higher order moments.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002384/pdfft?md5=df7c086d07ad8089c037d05fa561ad0c&pid=1-s2.0-S0167715224002384-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain a Stein characterisation of the distribution of the product of two correlated normal random variables with non-zero means, and more generally the distribution of the sum of independent copies of such random variables. Our Stein characterisation is shown to naturally generalise a number of other Stein characterisations in the literature. From our Stein characterisation we derive recursive formulas for the moments of the product of two correlated normal random variables, and more generally the sum of independent copies of such random variables, which allows for efficient computation of higher order moments.

分享
查看原文
相关正态随机变量乘积分布的斯坦式表征
我们得到了两个均值不为零的相关正态随机变量乘积分布的斯坦因特征,以及更一般的此类随机变量独立副本之和的分布。我们的斯坦因描述自然地概括了文献中的其他一些斯坦因描述。根据我们的斯坦因特征,我们推导出了两个相关正态随机变量乘积的矩的递推公式,以及更广义的此类随机变量独立副本之和的递推公式,从而可以高效地计算高阶矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信