Effects of increased temperature and altered POC composition on a bathyal macrofaunal community in Cabo Verde, NE Atlantic

IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY
{"title":"Effects of increased temperature and altered POC composition on a bathyal macrofaunal community in Cabo Verde, NE Atlantic","authors":"","doi":"10.1016/j.pocean.2024.103352","DOIUrl":null,"url":null,"abstract":"<div><p>Deep-sea ecosystems are particularly important to the cycling of matter and energy in the oceans and therefore in regulating Earth’s climate. The Atlantic Ocean is already experiencing significant abiotic changes, with expected warmer temperatures coupled with decreased particulate organic carbon (POC) export flux. However, there is yet a large gap in our understanding of warming impacts on deep benthic ecosystems and in the organic matter processing by benthic organisms in the seafloor. This study employed an experimental approach to assess the single and cumulative effects of two climate change stressors, temperature and POC quality, on macrofaunal benthic assemblages in the Cabo Verde Basin (CVB, Equatorial Atlantic) bathyal continental slope. Incubation enrichment experiments with <sup>13</sup>C and <sup>15</sup>N labelled diatoms <em>Phaeodactylum tricornutum</em> simulated climate projections for the next century with a balanced design, studying the effect of either increased temperature (+2°C), reduced POC quality (dialysed labile fraction), or both, against a control treatment. We found that echinoderms and polychaetes rapidly ingested labelled algae at rates between 0.02 and 21.9 µg C m<sup>−2</sup> d<sup>-1</sup>. Given a strong spatial variability in macrofaunal biomass, the carbon and nitrogen incorporation by macrofauna was not affected by a + 2 °C warming, by a decreased organic matter quality, or the combination of both factors. Our study provides valuable insights into the biodiversity, biomass, and ecosystem functioning (C and N uptake rates) of deep-sea benthic ecosystems in the N Atlantic, and stress that potential effects of warmer temperatures and POC quality on carbon and nitrogen incorporation by macrofauna remain uncertain. We highlight the value of these experiments to better understand the effects of climate change on deep-sea ecosystems.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124001587","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep-sea ecosystems are particularly important to the cycling of matter and energy in the oceans and therefore in regulating Earth’s climate. The Atlantic Ocean is already experiencing significant abiotic changes, with expected warmer temperatures coupled with decreased particulate organic carbon (POC) export flux. However, there is yet a large gap in our understanding of warming impacts on deep benthic ecosystems and in the organic matter processing by benthic organisms in the seafloor. This study employed an experimental approach to assess the single and cumulative effects of two climate change stressors, temperature and POC quality, on macrofaunal benthic assemblages in the Cabo Verde Basin (CVB, Equatorial Atlantic) bathyal continental slope. Incubation enrichment experiments with 13C and 15N labelled diatoms Phaeodactylum tricornutum simulated climate projections for the next century with a balanced design, studying the effect of either increased temperature (+2°C), reduced POC quality (dialysed labile fraction), or both, against a control treatment. We found that echinoderms and polychaetes rapidly ingested labelled algae at rates between 0.02 and 21.9 µg C m−2 d-1. Given a strong spatial variability in macrofaunal biomass, the carbon and nitrogen incorporation by macrofauna was not affected by a + 2 °C warming, by a decreased organic matter quality, or the combination of both factors. Our study provides valuable insights into the biodiversity, biomass, and ecosystem functioning (C and N uptake rates) of deep-sea benthic ecosystems in the N Atlantic, and stress that potential effects of warmer temperatures and POC quality on carbon and nitrogen incorporation by macrofauna remain uncertain. We highlight the value of these experiments to better understand the effects of climate change on deep-sea ecosystems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Oceanography
Progress in Oceanography 地学-海洋学
CiteScore
7.20
自引率
4.90%
发文量
138
审稿时长
3 months
期刊介绍: Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信