Zhang Wenlong , Wang Yadong , Esbaugh Andrew , Grosell Martin
{"title":"Characterization of two carbonic anhydrase isoforms in the pulmonate snail (Lymnaea Stagnalis) and their involvement in Molluskan calcification","authors":"Zhang Wenlong , Wang Yadong , Esbaugh Andrew , Grosell Martin","doi":"10.1016/j.cbpb.2024.111028","DOIUrl":null,"url":null,"abstract":"<div><p>Calcifying organisms are suffering from negative impacts induced by climate change, such as CO<sub>2</sub>-induced acidification, which may impair external calcified structures. Freshwater mollusks have the potential to suffer more from CO<sub>2</sub>-induced acidification than marine calcifiers due to the lower buffering capacity of many freshwater systems. One of the most important enzymes contributing to the biomineralization reaction is carbonic anhydrase (CA), which catalyzes the reversible conversion of CO<sub>2</sub> to bicarbonate, the major carbon source of the calcareous structure in calcifiers. In this study we characterized two α-CA isoforms (LsCA1 and LsCA4) from the freshwater snail <em>Lymnaea stagnalis</em> using a combination of gene sequencing, gene expression, phylogenetic analysis and biochemical assays. Both CA isoforms demonstrated high expression levels in the mantle tissue, the major site for biomineralization. Furthermore, expression of LsCA4 during development parallels shell formation. The primary protein structure analysis, active site configuration and the catalytic activity of LsCA4 together suggest that the LsCA4 is embedded in the apical and basolateral membranes of mantle cells; while LsCA1 is proposed to be cytosolic and might play an important role in acid-base regulation. These findings of LsCA isoforms form a strong basis for a more detailed physiological understanding of the effects of elevated CO<sub>2</sub> on calcification in freshwater mollusks.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495924000952","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Calcifying organisms are suffering from negative impacts induced by climate change, such as CO2-induced acidification, which may impair external calcified structures. Freshwater mollusks have the potential to suffer more from CO2-induced acidification than marine calcifiers due to the lower buffering capacity of many freshwater systems. One of the most important enzymes contributing to the biomineralization reaction is carbonic anhydrase (CA), which catalyzes the reversible conversion of CO2 to bicarbonate, the major carbon source of the calcareous structure in calcifiers. In this study we characterized two α-CA isoforms (LsCA1 and LsCA4) from the freshwater snail Lymnaea stagnalis using a combination of gene sequencing, gene expression, phylogenetic analysis and biochemical assays. Both CA isoforms demonstrated high expression levels in the mantle tissue, the major site for biomineralization. Furthermore, expression of LsCA4 during development parallels shell formation. The primary protein structure analysis, active site configuration and the catalytic activity of LsCA4 together suggest that the LsCA4 is embedded in the apical and basolateral membranes of mantle cells; while LsCA1 is proposed to be cytosolic and might play an important role in acid-base regulation. These findings of LsCA isoforms form a strong basis for a more detailed physiological understanding of the effects of elevated CO2 on calcification in freshwater mollusks.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.