Design and fabrication of MnCo2O4@MnCo2S4 Core@Shell nanostructured arrays decorated over the rGO sheets for high-performance asymmetric supercapacitor

IF 3.8 Q2 CHEMISTRY, PHYSICAL
N. Vijayakumar , A. Thirugnanasundar
{"title":"Design and fabrication of MnCo2O4@MnCo2S4 Core@Shell nanostructured arrays decorated over the rGO sheets for high-performance asymmetric supercapacitor","authors":"N. Vijayakumar ,&nbsp;A. Thirugnanasundar","doi":"10.1016/j.chphi.2024.100734","DOIUrl":null,"url":null,"abstract":"<div><p>In order to create reliable and effective energy storage systems, it is crucial to choose electrode materials that exhibit high stability and energy density. In this work, MnCo<sub>2</sub>S<sub>4</sub>@MnCo<sub>2</sub>O<sub>4</sub> core@shell nanoneedle-like nanostructures (MCS@MCO/rGO) are synthesised over a rGO sheet using an innovative and easy hydrothermal technique. Electrolyte transport and sulphur incorporation during charge-discharge reactions are both made easier by the core@shell nanostructured arrays' large active surface area. With an appropriate pore size distribution centred at 13.4 nm and a high surface area of 125.4 m<sup>2</sup>g<sup>-1</sup>, the ternary electrodes composed of MCS@MCO and rGO have a rich mesoporous structure. A specific capacitance of 1346 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup> demonstrates the exceptional performance of the MCS@MCO/rGO ternary electrode. The MCS@MCO/rGO ternary electrodes show a remarkable cyclic stability of 88.9 % capacity retention over 10,000 cycles, according to the cycling stability studies. With an impressive power density of 1010 Wkg<sup>-1</sup> and remarkable cycling stability (95.5 % retention of the original capacitance after 10,000 cycles), the manufactured MCS@MCO/rGO//AC ACS displays an impressive energy density of 57.5 Whkg<sup>-1</sup>. The mesoporous structure is excellent for increasing the characteristics of supercapacitor electrodes, as these astounding results can demonstrate.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002780/pdfft?md5=1b864eb2930219ca6ac89be4f048ec4a&pid=1-s2.0-S2667022424002780-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424002780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to create reliable and effective energy storage systems, it is crucial to choose electrode materials that exhibit high stability and energy density. In this work, MnCo2S4@MnCo2O4 core@shell nanoneedle-like nanostructures (MCS@MCO/rGO) are synthesised over a rGO sheet using an innovative and easy hydrothermal technique. Electrolyte transport and sulphur incorporation during charge-discharge reactions are both made easier by the core@shell nanostructured arrays' large active surface area. With an appropriate pore size distribution centred at 13.4 nm and a high surface area of 125.4 m2g-1, the ternary electrodes composed of MCS@MCO and rGO have a rich mesoporous structure. A specific capacitance of 1346 Fg-1 at 1 Ag-1 demonstrates the exceptional performance of the MCS@MCO/rGO ternary electrode. The MCS@MCO/rGO ternary electrodes show a remarkable cyclic stability of 88.9 % capacity retention over 10,000 cycles, according to the cycling stability studies. With an impressive power density of 1010 Wkg-1 and remarkable cycling stability (95.5 % retention of the original capacitance after 10,000 cycles), the manufactured MCS@MCO/rGO//AC ACS displays an impressive energy density of 57.5 Whkg-1. The mesoporous structure is excellent for increasing the characteristics of supercapacitor electrodes, as these astounding results can demonstrate.

Abstract Image

设计和制备装饰在 rGO 片材上的 MnCo2O4@MnCo2S4 核@壳纳米结构阵列,用于高性能不对称超级电容器
为了创建可靠而有效的储能系统,选择具有高稳定性和高能量密度的电极材料至关重要。在这项工作中,采用创新的简便水热技术在 rGO 片材上合成了 MnCo2S4@MnCo2O4 核@壳纳米锥状纳米结构(MCS@MCO/rGO)。由于芯@壳纳米结构阵列具有较大的活性表面积,因此在充放电反应过程中电解液的传输和硫的掺入都变得更加容易。由 MCS@MCO 和 rGO 组成的三元电极具有以 13.4 nm 为中心的适当孔径分布和 125.4 m2g-1 的高表面积,具有丰富的介孔结构。在 1 Ag-1 的条件下,MCS@MCO/rGO 三元电极的比电容为 1346 Fg-1,这证明了 MCS@MCO/rGO 三元电极的优异性能。根据循环稳定性研究,MCS@MCO/rGO 三元电极具有显著的循环稳定性,在 10,000 次循环中的容量保持率为 88.9%。制造出的 MCS@MCO/rGO//AC ACS 具有 1010 Wkg-1 的惊人功率密度和显著的循环稳定性(10,000 次循环后原始电容保持率为 95.5%),显示出 57.5 Whkg-1 的惊人能量密度。正如这些令人震惊的结果所证明的那样,介孔结构是提高超级电容器电极特性的绝佳材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信