Ren-Wei-Yang Zhang , Dan-Dan Yuan , Xue Yang , Yong-Bing Yang , Fa-Ping Li , Xu-Yang Chen , Kai Wang , Jie Liu , Li-Na Yu , Zhi-Gang Hu
{"title":"Detection of egg white allergy in children by specific IgE microarray chemiluminescence immunoassay","authors":"Ren-Wei-Yang Zhang , Dan-Dan Yuan , Xue Yang , Yong-Bing Yang , Fa-Ping Li , Xu-Yang Chen , Kai Wang , Jie Liu , Li-Na Yu , Zhi-Gang Hu","doi":"10.1016/j.cca.2024.119966","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Allergen testing has emerged as a pivotal component in prevention and treatment strategies for allergic diseases among children and the utilization of specific IgE (sIgE) through a fully automated chemiluminescent microarray immunoassay (CLMIA) has emerged as a promising trend in the simultaneous detection of multiple allergenic components of children.</p></div><div><h3>Methods</h3><p>The accuracy and reliability of CLMIA were verified using children’s serum samples that concentrated on allergens. the allergens. The clinical diagnostic practicability of CLMIA was assessed through comprehensive evaluations including measurements of the limit of detection (LOD), intra-batch, and inter-batch precision, linearity analysis, the cross-contamination rate, and the concordance rate with the Phadia system.</p></div><div><h3>Results</h3><p>After the optimization process of CLMIA, the LODs for allergens were calculated to be below 0.01 kU/L, demonstrating the high sensitivity of CLMIA. All components exhibited good linearity within the range of 0.1–100.0 kU/L and the coefficient of determinations (R<sup>2</sup> > 0.99). The data of intra-batch precision (<10 %) and inter-batch data (<15 %) illustrated the high reproducibility of CLMIA. The cross-contamination rates for allergens (<0.5 %) showed the high accuracy of CLMIA without interfering. The positive concordance rate between CLMIA and the Phadia system exceeds 90 % with a good negative concordance rate (>85 %) and the Kappa coefficients (>0.8), suggesting the close alignment of CLMIA and the Phadia system and showing the satisfactory clinical potential of CLMIA in children’s allergy disease.</p></div><div><h3>Conclusions</h3><p>The application of CLMIA has been promising in allergen testing, especially for detecting multiple allergenic components in children.</p></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009898124022198","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Allergen testing has emerged as a pivotal component in prevention and treatment strategies for allergic diseases among children and the utilization of specific IgE (sIgE) through a fully automated chemiluminescent microarray immunoassay (CLMIA) has emerged as a promising trend in the simultaneous detection of multiple allergenic components of children.
Methods
The accuracy and reliability of CLMIA were verified using children’s serum samples that concentrated on allergens. the allergens. The clinical diagnostic practicability of CLMIA was assessed through comprehensive evaluations including measurements of the limit of detection (LOD), intra-batch, and inter-batch precision, linearity analysis, the cross-contamination rate, and the concordance rate with the Phadia system.
Results
After the optimization process of CLMIA, the LODs for allergens were calculated to be below 0.01 kU/L, demonstrating the high sensitivity of CLMIA. All components exhibited good linearity within the range of 0.1–100.0 kU/L and the coefficient of determinations (R2 > 0.99). The data of intra-batch precision (<10 %) and inter-batch data (<15 %) illustrated the high reproducibility of CLMIA. The cross-contamination rates for allergens (<0.5 %) showed the high accuracy of CLMIA without interfering. The positive concordance rate between CLMIA and the Phadia system exceeds 90 % with a good negative concordance rate (>85 %) and the Kappa coefficients (>0.8), suggesting the close alignment of CLMIA and the Phadia system and showing the satisfactory clinical potential of CLMIA in children’s allergy disease.
Conclusions
The application of CLMIA has been promising in allergen testing, especially for detecting multiple allergenic components in children.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.