{"title":"Functional phenomics and genomics: Unravelling heat stress responses in wheat","authors":"Md. Omar Kayess , Md. Ashrafuzzaman , Md. Arifur Rahman Khan , Md. Nurealam Siddiqui","doi":"10.1016/j.stress.2024.100601","DOIUrl":null,"url":null,"abstract":"<div><p>Heat stress severely impacts wheat production by altering morpho-physiological traits, disrupting cellular physiological and biochemical attributes, and ultimately affecting the genetic makeup of the plant. Heat affects the thermosensitive traits of the vegetative and reproductive stages of wheat. Therefore, it is imperative to employ precise and expedite trait-based phenotyping as well genomics tools and crop breeding approaches to develop heat tolerant wheat cultivars. While trait-based breeding has been a time-consuming approach, it faces numerous challenges due to the labour-intensive, expensive, less accurate, environment-specific, and time-consuming process of screening, particularly for large numbers of genotypes. Nevertheless, recent breakthroughs in functional phenotyping, a platform that offers valuable insights into the dynamic responses of plants to heat stress. Conversely, functional genomics investigates genetic and epigenetic systems to identify and pinpoint gene variations related to specific traits. Therefore, this review summarizes heat stress effects on wheat at morphological, physiological and biochemical levels. Further, we highlight the potential of functional phenotyping that can rapidly detect wheat's physiological aspects in response to hot spells. We then finally highlight cutting-edge breeding strategies for enhancing heat tolerance in wheat, emphasizing an integrated approach that combines phenomics and genomics tools.</p></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100601"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667064X24002549/pdfft?md5=223da86db587196b035ddbdfd4247e34&pid=1-s2.0-S2667064X24002549-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heat stress severely impacts wheat production by altering morpho-physiological traits, disrupting cellular physiological and biochemical attributes, and ultimately affecting the genetic makeup of the plant. Heat affects the thermosensitive traits of the vegetative and reproductive stages of wheat. Therefore, it is imperative to employ precise and expedite trait-based phenotyping as well genomics tools and crop breeding approaches to develop heat tolerant wheat cultivars. While trait-based breeding has been a time-consuming approach, it faces numerous challenges due to the labour-intensive, expensive, less accurate, environment-specific, and time-consuming process of screening, particularly for large numbers of genotypes. Nevertheless, recent breakthroughs in functional phenotyping, a platform that offers valuable insights into the dynamic responses of plants to heat stress. Conversely, functional genomics investigates genetic and epigenetic systems to identify and pinpoint gene variations related to specific traits. Therefore, this review summarizes heat stress effects on wheat at morphological, physiological and biochemical levels. Further, we highlight the potential of functional phenotyping that can rapidly detect wheat's physiological aspects in response to hot spells. We then finally highlight cutting-edge breeding strategies for enhancing heat tolerance in wheat, emphasizing an integrated approach that combines phenomics and genomics tools.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.