Function recovery on manifolds using scattered data

IF 0.9 3区 数学 Q2 MATHEMATICS
David Krieg , Mathias Sonnleitner
{"title":"Function recovery on manifolds using scattered data","authors":"David Krieg ,&nbsp;Mathias Sonnleitner","doi":"10.1016/j.jat.2024.106098","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the task of recovering a Sobolev function on a connected compact Riemannian manifold <span><math><mi>M</mi></math></span> when given a sample on a finite point set. We prove that the quality of the sample is given by the <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>-average of the geodesic distance to the point set and determine the value of <span><math><mrow><mi>γ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>]</mo></mrow></mrow></math></span>. This extends our findings on bounded convex domains [IMA J. Numer. Anal., 2024]. As a byproduct, we prove the optimal rate of convergence of the <span><math><mi>n</mi></math></span>th minimal worst case error for <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>-approximation for all <span><math><mrow><mn>1</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mi>∞</mi></mrow></math></span>.</p><p>Further, a limit theorem for moments of the average distance to a set consisting of i.i.d. uniform points is proven. This yields that a random sample is asymptotically as good as an optimal sample in precisely those cases with <span><math><mrow><mi>γ</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>. In particular, we obtain that cubature formulas with random nodes are asymptotically as good as optimal cubature formulas if the weights are chosen correctly. This closes a logarithmic gap left open by Ehler, Gräf and Oates [Stat. Comput., 29:1203-1214, 2019].</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000868/pdfft?md5=fe139e66c2cbd25bf59dda36950e8234&pid=1-s2.0-S0021904524000868-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000868","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the task of recovering a Sobolev function on a connected compact Riemannian manifold M when given a sample on a finite point set. We prove that the quality of the sample is given by the Lγ(M)-average of the geodesic distance to the point set and determine the value of γ(0,]. This extends our findings on bounded convex domains [IMA J. Numer. Anal., 2024]. As a byproduct, we prove the optimal rate of convergence of the nth minimal worst case error for Lq(M)-approximation for all 1q.

Further, a limit theorem for moments of the average distance to a set consisting of i.i.d. uniform points is proven. This yields that a random sample is asymptotically as good as an optimal sample in precisely those cases with γ<. In particular, we obtain that cubature formulas with random nodes are asymptotically as good as optimal cubature formulas if the weights are chosen correctly. This closes a logarithmic gap left open by Ehler, Gräf and Oates [Stat. Comput., 29:1203-1214, 2019].

利用分散数据恢复流形上的函数
我们考虑了当给定有限点集上的样本时,在连通紧凑黎曼流形 M 上恢复 Sobolev 函数的任务。我们证明样本的质量是由到点集的大地距离的 Lγ(M)- 平均值给出的,并确定了 γ∈(0,∞] 的值。这扩展了我们在有界凸域上的发现[IMA J. Numer. Anal.]作为副产品,我们证明了 Lq(M)-approximation 在所有 1≤q≤∞ 条件下第 n 次最小最坏情况误差的最佳收敛速率。由此可以得出,正是在γ<∞的情况下,随机样本在渐近上与最优样本一样好。特别是,如果权重选择得当,我们可以得到带有随机节点的立体公式在渐近上与最优立体公式一样好。这弥补了埃勒、格拉夫和奥茨[Stat. Comput., 29:1203-1214, 2019]留下的对数差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信