{"title":"Crack elimination and strength enhancement mechanisms of selective laser melted Si-modified Al−Mn−Mg−Er−Zr alloy","authors":"Jiang YU , Yao-xiang GENG , Hong-bo JU , Zhi-jie ZHANG , Jun-hua XU","doi":"10.1016/S1003-6326(24)66551-9","DOIUrl":null,"url":null,"abstract":"<div><p>In order to increase the processability and process window of the selective laser melting (SLM)-fabricated Al−Mn−Mg−Er−Zr alloy, a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed. The effect of Si alloying on the surface quality, processability, microstructure, and mechanical properties of the SLM-fabricated alloy was studied. The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation, refined the grain size, and reduced the solidification temperature, which eliminated cracks and increased the processability and process window of the alloy. The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%. The yield strength and ultimate tensile strength of the alloy were (371±7) MPa and (518±6) MPa, respectively. These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.</p></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 8","pages":"Pages 2431-2441"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1003632624665519/pdf?md5=59242cf610971c719a0f862de73ad4a5&pid=1-s2.0-S1003632624665519-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665519","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In order to increase the processability and process window of the selective laser melting (SLM)-fabricated Al−Mn−Mg−Er−Zr alloy, a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed. The effect of Si alloying on the surface quality, processability, microstructure, and mechanical properties of the SLM-fabricated alloy was studied. The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation, refined the grain size, and reduced the solidification temperature, which eliminated cracks and increased the processability and process window of the alloy. The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%. The yield strength and ultimate tensile strength of the alloy were (371±7) MPa and (518±6) MPa, respectively. These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.