{"title":"Implications of β-Arrestin biased signaling by angiotensin II type 1 receptor for cardiovascular drug discovery and therapeutics","authors":"","doi":"10.1016/j.cellsig.2024.111410","DOIUrl":null,"url":null,"abstract":"<div><p>Angiotensin II receptors, Type 1 (AT1R) and Type 2 (AT2R) are 7TM receptors that play critical roles in both the physiological and pathophysiological regulation of the cardiovascular system. While AT1R blockers (ARBs) have proven beneficial in managing cardiac, vascular and renal maladies they cannot completely halt and reverse the progression of pathologies. Numerous experimental and animal studies have demonstrated that β-arrestin biased AT1R-ligands (such as SII-AngII, S1I8, TRV023, and TRV027) offer cardiovascular benefits by blocking the G protein signaling while retaining the β-arrestin signaling. However, these ligands failed to show improvement in heart-failure outcome over the placebo in a phase IIb clinical trial. One major limitation of current β-arrestin biased AT1R-ligands is that they are peptides with short half-lives, limiting their long-term efficacy in patients. Additionally, β-arrestin biased AT1R-ligand peptides, may inadvertently block AT2R, a promiscuous receptor, potentially negating its beneficial effects in post-myocardial infarction (MI) patients. Therefore, developing a small molecule β-arrestin biased AT1R-ligand with a longer half-life and specificity to AT1R could be more effective in treating heart failure. This approach has the potential to revolutionize the treatment of cardiovascular diseases by offering more sustained and targeted therapeutic effects.</p></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0898656824003784/pdfft?md5=0677b80d32693f45f7b1c9a45add5968&pid=1-s2.0-S0898656824003784-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656824003784","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Angiotensin II receptors, Type 1 (AT1R) and Type 2 (AT2R) are 7TM receptors that play critical roles in both the physiological and pathophysiological regulation of the cardiovascular system. While AT1R blockers (ARBs) have proven beneficial in managing cardiac, vascular and renal maladies they cannot completely halt and reverse the progression of pathologies. Numerous experimental and animal studies have demonstrated that β-arrestin biased AT1R-ligands (such as SII-AngII, S1I8, TRV023, and TRV027) offer cardiovascular benefits by blocking the G protein signaling while retaining the β-arrestin signaling. However, these ligands failed to show improvement in heart-failure outcome over the placebo in a phase IIb clinical trial. One major limitation of current β-arrestin biased AT1R-ligands is that they are peptides with short half-lives, limiting their long-term efficacy in patients. Additionally, β-arrestin biased AT1R-ligand peptides, may inadvertently block AT2R, a promiscuous receptor, potentially negating its beneficial effects in post-myocardial infarction (MI) patients. Therefore, developing a small molecule β-arrestin biased AT1R-ligand with a longer half-life and specificity to AT1R could be more effective in treating heart failure. This approach has the potential to revolutionize the treatment of cardiovascular diseases by offering more sustained and targeted therapeutic effects.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.