Implications of β-Arrestin biased signaling by angiotensin II type 1 receptor for cardiovascular drug discovery and therapeutics

IF 4.4 2区 生物学 Q2 CELL BIOLOGY
{"title":"Implications of β-Arrestin biased signaling by angiotensin II type 1 receptor for cardiovascular drug discovery and therapeutics","authors":"","doi":"10.1016/j.cellsig.2024.111410","DOIUrl":null,"url":null,"abstract":"<div><p>Angiotensin II receptors, Type 1 (AT1R) and Type 2 (AT2R) are 7TM receptors that play critical roles in both the physiological and pathophysiological regulation of the cardiovascular system. While AT1R blockers (ARBs) have proven beneficial in managing cardiac, vascular and renal maladies they cannot completely halt and reverse the progression of pathologies. Numerous experimental and animal studies have demonstrated that β-arrestin biased AT1R-ligands (such as SII-AngII, S1I8, TRV023, and TRV027) offer cardiovascular benefits by blocking the G protein signaling while retaining the β-arrestin signaling. However, these ligands failed to show improvement in heart-failure outcome over the placebo in a phase IIb clinical trial. One major limitation of current β-arrestin biased AT1R-ligands is that they are peptides with short half-lives, limiting their long-term efficacy in patients. Additionally, β-arrestin biased AT1R-ligand peptides, may inadvertently block AT2R, a promiscuous receptor, potentially negating its beneficial effects in post-myocardial infarction (MI) patients. Therefore, developing a small molecule β-arrestin biased AT1R-ligand with a longer half-life and specificity to AT1R could be more effective in treating heart failure. This approach has the potential to revolutionize the treatment of cardiovascular diseases by offering more sustained and targeted therapeutic effects.</p></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0898656824003784/pdfft?md5=0677b80d32693f45f7b1c9a45add5968&pid=1-s2.0-S0898656824003784-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656824003784","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Angiotensin II receptors, Type 1 (AT1R) and Type 2 (AT2R) are 7TM receptors that play critical roles in both the physiological and pathophysiological regulation of the cardiovascular system. While AT1R blockers (ARBs) have proven beneficial in managing cardiac, vascular and renal maladies they cannot completely halt and reverse the progression of pathologies. Numerous experimental and animal studies have demonstrated that β-arrestin biased AT1R-ligands (such as SII-AngII, S1I8, TRV023, and TRV027) offer cardiovascular benefits by blocking the G protein signaling while retaining the β-arrestin signaling. However, these ligands failed to show improvement in heart-failure outcome over the placebo in a phase IIb clinical trial. One major limitation of current β-arrestin biased AT1R-ligands is that they are peptides with short half-lives, limiting their long-term efficacy in patients. Additionally, β-arrestin biased AT1R-ligand peptides, may inadvertently block AT2R, a promiscuous receptor, potentially negating its beneficial effects in post-myocardial infarction (MI) patients. Therefore, developing a small molecule β-arrestin biased AT1R-ligand with a longer half-life and specificity to AT1R could be more effective in treating heart failure. This approach has the potential to revolutionize the treatment of cardiovascular diseases by offering more sustained and targeted therapeutic effects.

血管紧张素 II 1 型受体偏向β-阿司匹林的信号传导对心血管药物发现和治疗的影响
血管紧张素 II 受体 1 型(AT1R)和 2 型(AT2R)是 7TM 受体,在心血管系统的生理和病理生理学调节中发挥着关键作用。事实证明,AT1R 阻断剂(ARBs)有助于治疗心脏、血管和肾脏疾病,但不能完全阻止和逆转病变的发展。大量实验和动物研究表明,偏向β-阿司匹林的AT1R配体(如SII-AngII、S1I8、TRV023和TRV027)在保留β-阿司匹林信号传导的同时阻断了G蛋白信号传导,从而对心血管有益。然而,在一项 IIb 期临床试验中,这些配体未能显示出比安慰剂更好的心脏衰竭疗效。目前偏向β-阿司匹林的AT1R配体的一个主要局限是它们是半衰期短的多肽,限制了它们对患者的长期疗效。此外,偏向β-阻遏素的AT1R配体肽可能会无意中阻断AT2R(一种杂交受体),从而可能抵消其对心肌梗塞(MI)后患者的有益作用。因此,开发一种半衰期更长、对 AT1R 具有特异性的偏向于 AT1R 的β-阿司匹林小分子配体,可能会更有效地治疗心力衰竭。这种方法可以提供更持久、更有针对性的治疗效果,从而有可能彻底改变心血管疾病的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular signalling
Cellular signalling 生物-细胞生物学
CiteScore
8.40
自引率
0.00%
发文量
250
审稿时长
27 days
期刊介绍: Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo. Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信