Feature Engineering for estimating the maturity of lunar soils from spectroscopic data

Sandeepan Dhoundiyal , Shivam Kumar , Debosmita Paul , Malcolm Aranha , Guneshwar Thangjam , Alok Porwal
{"title":"Feature Engineering for estimating the maturity of lunar soils from spectroscopic data","authors":"Sandeepan Dhoundiyal ,&nbsp;Shivam Kumar ,&nbsp;Debosmita Paul ,&nbsp;Malcolm Aranha ,&nbsp;Guneshwar Thangjam ,&nbsp;Alok Porwal","doi":"10.1016/j.oreoa.2024.100064","DOIUrl":null,"url":null,"abstract":"<div><p>Existing algorithms for estimating the maturity of lunar soils are not optimized for data from any of the orbital sensors which are currently active. This paper addresses this issue by proposing an algorithm for estimating soil maturity (I<sub>S</sub>/FeO) using spectroscopic data at the spectral resolution of the Moon Mineralogy Mapper (M<sup>3</sup>). As part of this method, four key spectral parameters for estimating I<sub>S</sub>/FeO are identified and used to train a Support Vector Regression (SVR) model. The physical significance of each parameter is discussed, and the equation of the predictive hyperplane is provided for increased transparency. The proposed method outperforms state-of-the-art algorithms and returns a coefficient of determination (<em>R</em><sup><em>2</em></sup>) of 0.92 over the Lunar Soil Characterization Consortium (LSCC) dataset.</p></div>","PeriodicalId":100993,"journal":{"name":"Ore and Energy Resource Geology","volume":"17 ","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore and Energy Resource Geology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666261224000269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing algorithms for estimating the maturity of lunar soils are not optimized for data from any of the orbital sensors which are currently active. This paper addresses this issue by proposing an algorithm for estimating soil maturity (IS/FeO) using spectroscopic data at the spectral resolution of the Moon Mineralogy Mapper (M3). As part of this method, four key spectral parameters for estimating IS/FeO are identified and used to train a Support Vector Regression (SVR) model. The physical significance of each parameter is discussed, and the equation of the predictive hyperplane is provided for increased transparency. The proposed method outperforms state-of-the-art algorithms and returns a coefficient of determination (R2) of 0.92 over the Lunar Soil Characterization Consortium (LSCC) dataset.

从光谱数据估算月球土壤成熟度的特征工程
现有的估算月球土壤成熟度的算法没有针对目前使用的任何轨道传感器的数据进行优化。本文针对这一问题,提出了一种利用月球矿物学成像仪(M3)光谱分辨率的光谱数据估算土壤成熟度(IS/FeO)的算法。作为该方法的一部分,确定了用于估算 IS/FeO 的四个关键光谱参数,并将其用于训练支持向量回归(SVR)模型。讨论了每个参数的物理意义,并提供了预测超平面方程以增加透明度。所提出的方法优于最先进的算法,在月球土壤特性联合会(LSCC)数据集上的判定系数(R2)为 0.92。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信