Simulation study of a novel phase change cooling garment for electricians in a high-temperature environment

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
{"title":"Simulation study of a novel phase change cooling garment for electricians in a high-temperature environment","authors":"","doi":"10.1016/j.ijrefrig.2024.08.013","DOIUrl":null,"url":null,"abstract":"<div><p>To mitigate the effects of heat stress on electricians during outdoor activities such as inspection, circuit repair, and daily maintenance in high-temperature environments, a novel design for a portable, efficient, and ergonomic phase change cooling garment is presented. First, the optimal phase change material is selected considering economic and environmental factors. Then, based on the heat balance equation of the human body and Fourier's law, the required phase change material mass and the optimal thickness of the retarded heat-absorbing layer are obtained and verified by numerical simulations and experiments. The results indicate that in a high-temperature environment of 38 °C for 2 h, electricians require 2.39 kg of phase change material. To meet the protective duration requirements of electricians' daily tasks, the optimal thickness of the phase change material is 8 mm, and the optimal thickness of the slow-release heat absorption layer is 3 mm. The results of this study have significant implications for the safety and protection of electricians in high-temperature environments. It aims to provide theoretical guidance for the design and innovation of personal cooling garments for electricians.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002871","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To mitigate the effects of heat stress on electricians during outdoor activities such as inspection, circuit repair, and daily maintenance in high-temperature environments, a novel design for a portable, efficient, and ergonomic phase change cooling garment is presented. First, the optimal phase change material is selected considering economic and environmental factors. Then, based on the heat balance equation of the human body and Fourier's law, the required phase change material mass and the optimal thickness of the retarded heat-absorbing layer are obtained and verified by numerical simulations and experiments. The results indicate that in a high-temperature environment of 38 °C for 2 h, electricians require 2.39 kg of phase change material. To meet the protective duration requirements of electricians' daily tasks, the optimal thickness of the phase change material is 8 mm, and the optimal thickness of the slow-release heat absorption layer is 3 mm. The results of this study have significant implications for the safety and protection of electricians in high-temperature environments. It aims to provide theoretical guidance for the design and innovation of personal cooling garments for electricians.

高温环境下电工用新型相变冷却服装的模拟研究
为了减轻电工在高温环境下进行检查、电路维修和日常维护等户外活动时的热应力影响,本文介绍了一种便携、高效和符合人体工程学的新型相变冷却服装设计。首先,考虑到经济和环境因素,选择了最佳相变材料。然后,根据人体热平衡方程和傅里叶定律,得出所需的相变材料质量和最佳缓速吸热层厚度,并通过数值模拟和实验进行验证。结果表明,在 38 °C 的高温环境中持续 2 小时,电工需要 2.39 千克的相变材料。为满足电工日常工作的防护时间要求,相变材料的最佳厚度为 8 毫米,缓释吸热层的最佳厚度为 3 毫米。本研究结果对电工在高温环境下的安全保护具有重要意义。它旨在为电工个人降温服装的设计和创新提供理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信