{"title":"Endoplasmic reticulum-targeted biomimetic nanoparticles induce apoptosis and ferroptosis by regulating endoplasmic reticulum function in colon cancer","authors":"","doi":"10.1016/j.jconrel.2024.09.018","DOIUrl":null,"url":null,"abstract":"<div><p>Colorectal cancer (CRC) is a major threat to human health, as it is one of the most common malignancies with a high incidence and mortality rate. The cancer cell membrane (CCM) has significant potential in targeted tumor drug delivery due to its membrane antigen-mediated homologous targeting ability. The endoplasmic reticulum (ER) in cancer cells plays a crucial role in apoptosis and ferroptosis. In this study, we developed an ER-targeted peptide-modified CCM-biomimetic nanoparticle-delivered lovastatin (LOV) nanomedicine delivery system (EMPP-LOV) for cancer treatment. Both <em>in vitro</em> and <em>in vivo</em> experiments demonstrated that EMPP could effectively target cancer cells and localize within the ER. EMPP-LOV modulated ER function to promote apoptosis and ferroptosis in tumor cells. Furthermore, synergistic antitumor efficacy was observed in both <em>in vitro</em> and <em>in vivo</em> models. EMPP-LOV induced apoptosis in CRC cells by over-activating endoplasmic reticulum stress and promoted ferroptosis by inhibiting the mevalonate pathway, leading to synergistic tumor growth inhibition with minimal toxicity to major organs. Overall, the EMPP-LOV delivery system, with its subcellular targeting capability within tumor cells, presents a promising therapeutic platform for CRC treatment.</p></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016836592400628X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) is a major threat to human health, as it is one of the most common malignancies with a high incidence and mortality rate. The cancer cell membrane (CCM) has significant potential in targeted tumor drug delivery due to its membrane antigen-mediated homologous targeting ability. The endoplasmic reticulum (ER) in cancer cells plays a crucial role in apoptosis and ferroptosis. In this study, we developed an ER-targeted peptide-modified CCM-biomimetic nanoparticle-delivered lovastatin (LOV) nanomedicine delivery system (EMPP-LOV) for cancer treatment. Both in vitro and in vivo experiments demonstrated that EMPP could effectively target cancer cells and localize within the ER. EMPP-LOV modulated ER function to promote apoptosis and ferroptosis in tumor cells. Furthermore, synergistic antitumor efficacy was observed in both in vitro and in vivo models. EMPP-LOV induced apoptosis in CRC cells by over-activating endoplasmic reticulum stress and promoted ferroptosis by inhibiting the mevalonate pathway, leading to synergistic tumor growth inhibition with minimal toxicity to major organs. Overall, the EMPP-LOV delivery system, with its subcellular targeting capability within tumor cells, presents a promising therapeutic platform for CRC treatment.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.