{"title":"Virulence variation and pathotypes of Zymoseptoria tritici isolates causing wheat leaf blotch in Oromia, Ethiopia","authors":"Girma Ababa , Tilahun Mekonnen","doi":"10.1016/j.funbio.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Leaf blotch, caused by <em>Zymoseptoria tritici</em>, is a fungal disease that poses a severe threat to wheat production worldwide. Knowledge of virulence variability is crucial in choosing effective control measures. However, there have only been a few studies of the pathogenic variability and pathotypes within Ethiopian isolates. Hence, the objective of this study was to assess the virulence spectrum and variability of <em>Z. tritici</em> isolates. Forty-three isolates were tested for their virulence and pathotype against 7 wheat differential lines that have different resistance genes. A pathogenicity assay detected 41 differential line-specific virulent isolates among 301 interactions between a host and pathogen based on the percentage coverage of the leaf area by pycnidia. Some isolates were virulent against 50 %–60 % of the resistant genes, but most of them were virulent against some differential lines. Isolates such as EtA-11, EtSh-1, EtSh-2, EtSh-4, and EtA-19 expressed broad-spectrum virulence, highlighting that such isolates are useful for germplasm screening. The isolates were classified into 25 pathotypes, defined by their differential virulence responses. They were also assigned to two clusters according to their mean pycnidia percent. Pathotypes and principal component analysis detected 58.1 % and 62.2 % pathogenic diversity in Ethiopian isolates, respectively. The current findings provide information that breeders can use to identify and select more resistant varieties for farmers.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614624001260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Leaf blotch, caused by Zymoseptoria tritici, is a fungal disease that poses a severe threat to wheat production worldwide. Knowledge of virulence variability is crucial in choosing effective control measures. However, there have only been a few studies of the pathogenic variability and pathotypes within Ethiopian isolates. Hence, the objective of this study was to assess the virulence spectrum and variability of Z. tritici isolates. Forty-three isolates were tested for their virulence and pathotype against 7 wheat differential lines that have different resistance genes. A pathogenicity assay detected 41 differential line-specific virulent isolates among 301 interactions between a host and pathogen based on the percentage coverage of the leaf area by pycnidia. Some isolates were virulent against 50 %–60 % of the resistant genes, but most of them were virulent against some differential lines. Isolates such as EtA-11, EtSh-1, EtSh-2, EtSh-4, and EtA-19 expressed broad-spectrum virulence, highlighting that such isolates are useful for germplasm screening. The isolates were classified into 25 pathotypes, defined by their differential virulence responses. They were also assigned to two clusters according to their mean pycnidia percent. Pathotypes and principal component analysis detected 58.1 % and 62.2 % pathogenic diversity in Ethiopian isolates, respectively. The current findings provide information that breeders can use to identify and select more resistant varieties for farmers.