Field-portable digital holographic quantitative phase imaging with a compact microscope's add-on module

IF 3.5 2区 工程技术 Q2 OPTICS
Samira Ebrahimi , Masoomeh Dashtdar , Carlo Fonda , Humberto Cabrera
{"title":"Field-portable digital holographic quantitative phase imaging with a compact microscope's add-on module","authors":"Samira Ebrahimi ,&nbsp;Masoomeh Dashtdar ,&nbsp;Carlo Fonda ,&nbsp;Humberto Cabrera","doi":"10.1016/j.optlaseng.2024.108580","DOIUrl":null,"url":null,"abstract":"<div><p>Digital holographic microscopy (DHM) is emerged as a promising quantitative phase-contrast imaging tool for full complex wavefront reconstruction of micron-sized bio-samples. The technique covers the dynamics investigation ranging in scales from sub-cellular to tissue and from milliseconds to hours. Recent advances of DHM lie in the configuration and numerical development of the method and making it more feasible for the users without optical expertise. In this paper, we aim to propose a low-cost and portable add-on module for DHM, which can be mounted on either the ocular or camera port of a conventional microscope and easily turn it to a multi-modal bright-field and DHM imaging tool. The module works based on the off-axis, common-path geometry using a single Fresnel biprism in the detection path of the microscope. This configuration enables a compact and cost-effective solution for point of care applications and in field measurements. The feasibility and efficiency of the device have been confirmed through several morphological investigations on biological specimens and the sub-nanometer phase stability enables the measurement of cell dynamics and phenotypic changes such as motility, growth, differentiation and membrane oscillations.</p></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108580"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014381662400558X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Digital holographic microscopy (DHM) is emerged as a promising quantitative phase-contrast imaging tool for full complex wavefront reconstruction of micron-sized bio-samples. The technique covers the dynamics investigation ranging in scales from sub-cellular to tissue and from milliseconds to hours. Recent advances of DHM lie in the configuration and numerical development of the method and making it more feasible for the users without optical expertise. In this paper, we aim to propose a low-cost and portable add-on module for DHM, which can be mounted on either the ocular or camera port of a conventional microscope and easily turn it to a multi-modal bright-field and DHM imaging tool. The module works based on the off-axis, common-path geometry using a single Fresnel biprism in the detection path of the microscope. This configuration enables a compact and cost-effective solution for point of care applications and in field measurements. The feasibility and efficiency of the device have been confirmed through several morphological investigations on biological specimens and the sub-nanometer phase stability enables the measurement of cell dynamics and phenotypic changes such as motility, growth, differentiation and membrane oscillations.

利用紧凑型显微镜的附加模块进行现场便携式数字全息定量相位成像
数字全息显微镜(DHM)是一种前景广阔的定量相位对比成像工具,可用于微米级生物样本的全复杂波面重建。该技术涵盖了从亚细胞到组织、从毫秒到数小时的动态研究。DHM 的最新进展在于该方法的配置和数值开发,并使其对没有光学专业知识的用户更加可行。在本文中,我们旨在提出一种低成本、便携式的 DHM 附加模块,该模块可安装在传统显微镜的目镜或相机端口上,轻松将其转变为多模式明视野和 DHM 成像工具。该模块的工作原理是在显微镜的检测路径上使用单个菲涅尔双棱镜,采用离轴共路径几何结构。这种配置为医疗点应用和现场测量提供了一种紧凑、经济的解决方案。该装置的可行性和效率已通过对生物标本的形态学研究得到证实,亚纳米级的相位稳定性使其能够测量细胞动态和表型变化,如运动、生长、分化和膜振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信