{"title":"The power of human stem cell-based systems in the study of neurodevelopmental disorders","authors":"Megha Jhanji , Elisa M. York , Sofia B. Lizarraga","doi":"10.1016/j.conb.2024.102916","DOIUrl":null,"url":null,"abstract":"<div><p>Neurodevelopmental disorders (NDDs) affect 15% of children and are usually associated with intellectual disability, seizures, and autistic behaviors, among other neurological presentations. Mutations in a wide spectrum of gene families alter key stages of human brain development, leading to defects in neural circuits or brain architecture. Studies in animal systems have provided important insights into the pathobiology of several NDDs. Human stem cell technologies provide a complementary system that allows functional manipulation of human brain cells during developmental stages that would otherwise be inaccessible during human fetal brain development. Therefore, stem cell-based models advance our understanding of human brain development by revealing human-specific mechanisms contributing to the broad pathogenesis of NDDs. We provide a comprehensive overview of the latest research on two and three-dimensional human stem cell-based models. First, we discuss convergent cellular and molecular phenotypes across different NDDs that have been revealed by human iPSC systems. Next, we examine the contribution of in vitro human neural systems to the development of promising therapeutic strategies. Finally, we explore the potential of stem cell systems to draw mechanistic insight for the study of sex dimorphism within NDDs.</p></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"89 ","pages":"Article 102916"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959438824000783/pdfft?md5=69a5fa57e6d1640458ce135c49194de8&pid=1-s2.0-S0959438824000783-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438824000783","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodevelopmental disorders (NDDs) affect 15% of children and are usually associated with intellectual disability, seizures, and autistic behaviors, among other neurological presentations. Mutations in a wide spectrum of gene families alter key stages of human brain development, leading to defects in neural circuits or brain architecture. Studies in animal systems have provided important insights into the pathobiology of several NDDs. Human stem cell technologies provide a complementary system that allows functional manipulation of human brain cells during developmental stages that would otherwise be inaccessible during human fetal brain development. Therefore, stem cell-based models advance our understanding of human brain development by revealing human-specific mechanisms contributing to the broad pathogenesis of NDDs. We provide a comprehensive overview of the latest research on two and three-dimensional human stem cell-based models. First, we discuss convergent cellular and molecular phenotypes across different NDDs that have been revealed by human iPSC systems. Next, we examine the contribution of in vitro human neural systems to the development of promising therapeutic strategies. Finally, we explore the potential of stem cell systems to draw mechanistic insight for the study of sex dimorphism within NDDs.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience