Study on geometric–arithmetic, arithmetic–geometric and Randić indices of graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Kinkar Chandra Das , Da-yeon Huh , Jayanta Bera , Sourav Mondal
{"title":"Study on geometric–arithmetic, arithmetic–geometric and Randić indices of graphs","authors":"Kinkar Chandra Das ,&nbsp;Da-yeon Huh ,&nbsp;Jayanta Bera ,&nbsp;Sourav Mondal","doi":"10.1016/j.dam.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>Topological indices are mathematical descriptors used in the field of chemistry to characterize the topological structure of chemical compounds. The Randić index (<span><math><mi>R</mi></math></span>), the geometric–arithmetic index (<span><math><mrow><mi>G</mi><mi>A</mi></mrow></math></span>), and the arithmetic–geometric index (<span><math><mrow><mi>A</mi><mi>G</mi></mrow></math></span>) represent three widely recognized topological indices. In most scenarios, the properties of <span><math><mrow><mi>A</mi><mi>G</mi></mrow></math></span> and <span><math><mrow><mi>G</mi><mi>A</mi></mrow></math></span> exhibit opposing tendencies. Furthermore, it is observed that, <span><math><mrow><mi>A</mi><mi>G</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&gt;</mo><mi>R</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>G</mi><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&gt;</mo><mi>R</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for any given graph <span><math><mi>G</mi></math></span>. Our focus is thus directed towards investigating the gaps between <span><math><mrow><mi>A</mi><mi>G</mi></mrow></math></span> and <span><math><mi>R</mi></math></span>, as well as <span><math><mrow><mi>G</mi><mi>A</mi></mrow></math></span> and <span><math><mi>R</mi></math></span>. We find that the invariants <span><math><mrow><mi>A</mi><mi>G</mi><mo>−</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><mi>G</mi><mi>A</mi><mo>−</mo><mi>R</mi></mrow></math></span> correlate well with some molecular properties. Numerous upper and lower bounds for the quantities <span><math><mrow><mi>A</mi><mi>G</mi><mo>−</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><mi>G</mi><mi>A</mi><mo>−</mo><mi>R</mi></mrow></math></span> are computed for general graphs, bipartite graphs, chemical graphs, trees, and chemical trees, in terms of graph order, with an emphasis on characterizing extremal graphs.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 229-245"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003998","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Topological indices are mathematical descriptors used in the field of chemistry to characterize the topological structure of chemical compounds. The Randić index (R), the geometric–arithmetic index (GA), and the arithmetic–geometric index (AG) represent three widely recognized topological indices. In most scenarios, the properties of AG and GA exhibit opposing tendencies. Furthermore, it is observed that, AG(G)>R(G) and GA(G)>R(G) for any given graph G. Our focus is thus directed towards investigating the gaps between AG and R, as well as GA and R. We find that the invariants AGR and GAR correlate well with some molecular properties. Numerous upper and lower bounds for the quantities AGR and GAR are computed for general graphs, bipartite graphs, chemical graphs, trees, and chemical trees, in terms of graph order, with an emphasis on characterizing extremal graphs.

图形的几何指数、算术指数和兰迪克指数研究
拓扑指数是化学领域用来描述化合物拓扑结构的数学描述符。兰迪克指数(R)、几何-算术指数(GA)和算术-几何指数(AG)是三种广为认可的拓扑指数。在大多数情况下,AG 和 GA 的属性表现出相反的趋势。此外,我们还观察到,对于任何给定的图 G,AG(G)>R(G)和 GA(G)>R(G)。因此,我们的重点是研究 AG 和 R 以及 GA 和 R 之间的差距。我们根据图的阶数计算了一般图、二叉图、化学图、树和化学树的 AG-R 和 GA-R 量的大量上界和下界,重点是极值图的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信