{"title":"Quantification of mycolic acids in different mycobacterial species by standard addition method through liquid chromatography mass spectrometry","authors":"Zeeshan Fatima , Meenakshi Chugh , Gaurav Nigam , Saif Hameed","doi":"10.1016/j.jchromb.2024.124297","DOIUrl":null,"url":null,"abstract":"<div><p><em>Mycobacteria</em> possess unique and robust lipid profile responsible for their pathogenesis and drug resistance. Mycolic acid (MA) represents an attractive diagnostic biomarker being absent in humans, inert and known to modulate host-pathogen interaction. Accurate measurement of MA is significant to design efficient therapeutics. Despite considerable advances in Liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) based approaches, quantification of mycobacterial lipids including MA is still challenging mainly because of ion suppression effects due to complex matrix and non-availability of suitable internal standards for MA. The current study demonstrates the use of standard addition method (SAM) to circumvent this problem and provides a reliable and exhaustive analytical method to quantify mycobacterial MA based on reversed-phase ultra-high-performance liquid chromatography- mass spectrometry data acquisition. In this method, multiple reaction monitoring (MRM) has been applied, wherein 16 MRM channels or transitions have been chosen for quantification of alpha-, methoxy- and keto-MAs with C-24 and C-26 hydrocarbon chains that are actually best suited for TB diagnostics. We found that the overall methodological limit of detection and limit of quantification were in the range 0.05–0.71 ng/µl and 0.16–2.16 ng/µl. Taken together, SAM quantitative technique could serve as promising alternative for relative concentration determination of MA to aid medical research.</p></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1247 ","pages":"Article 124297"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023224003064","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Mycobacteria possess unique and robust lipid profile responsible for their pathogenesis and drug resistance. Mycolic acid (MA) represents an attractive diagnostic biomarker being absent in humans, inert and known to modulate host-pathogen interaction. Accurate measurement of MA is significant to design efficient therapeutics. Despite considerable advances in Liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) based approaches, quantification of mycobacterial lipids including MA is still challenging mainly because of ion suppression effects due to complex matrix and non-availability of suitable internal standards for MA. The current study demonstrates the use of standard addition method (SAM) to circumvent this problem and provides a reliable and exhaustive analytical method to quantify mycobacterial MA based on reversed-phase ultra-high-performance liquid chromatography- mass spectrometry data acquisition. In this method, multiple reaction monitoring (MRM) has been applied, wherein 16 MRM channels or transitions have been chosen for quantification of alpha-, methoxy- and keto-MAs with C-24 and C-26 hydrocarbon chains that are actually best suited for TB diagnostics. We found that the overall methodological limit of detection and limit of quantification were in the range 0.05–0.71 ng/µl and 0.16–2.16 ng/µl. Taken together, SAM quantitative technique could serve as promising alternative for relative concentration determination of MA to aid medical research.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.