On trilinear and quadrilinear equations associated with the lattice Gel’fand–Dikii hierarchy

Q1 Mathematics
P.H. van der Kamp , F.W. Nijhoff , D.I. McLaren , G.R.W. Quispel
{"title":"On trilinear and quadrilinear equations associated with the lattice Gel’fand–Dikii hierarchy","authors":"P.H. van der Kamp ,&nbsp;F.W. Nijhoff ,&nbsp;D.I. McLaren ,&nbsp;G.R.W. Quispel","doi":"10.1016/j.padiff.2024.100913","DOIUrl":null,"url":null,"abstract":"<div><p>Introduced in Zhang et al. (2012), the trilinear Boussinesq equation is the natural form of the equation for the <span><math><mi>τ</mi></math></span>-function of the lattice Boussinesq system. In this paper we study various aspects of this equation: its highly nontrivial derivation from the bilinear lattice AKP equation under dimensional reduction, a quadrilinear dual lattice equation, conservation laws, and periodic reductions leading to higher-dimensional integrable maps and their Laurent property. Furthermore, we consider a higher Gel’fand–Dikii lattice system, its periodic reductions and Laurent property. As a special application, from both a trilinear Boussinesq recurrence as well as a higher Gel’fand–Dikii system of three bilinear recurrences, we establish Somos-like integer sequences.</p></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100913"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666818124002997/pdfft?md5=c112e5a820d962cd897377c0327ec253&pid=1-s2.0-S2666818124002997-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124002997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Introduced in Zhang et al. (2012), the trilinear Boussinesq equation is the natural form of the equation for the τ-function of the lattice Boussinesq system. In this paper we study various aspects of this equation: its highly nontrivial derivation from the bilinear lattice AKP equation under dimensional reduction, a quadrilinear dual lattice equation, conservation laws, and periodic reductions leading to higher-dimensional integrable maps and their Laurent property. Furthermore, we consider a higher Gel’fand–Dikii lattice system, its periodic reductions and Laurent property. As a special application, from both a trilinear Boussinesq recurrence as well as a higher Gel’fand–Dikii system of three bilinear recurrences, we establish Somos-like integer sequences.

论与格尔方-迪基层次结构相关的三线方程和四线方程
三线性布辛斯方程是格网布辛斯方程组的 τ 函数的自然形式。在本文中,我们研究了该方程的各个方面:在降维条件下从双线性晶格 AKP 方程衍生出的高度非线性方程、四线性对偶晶格方程、守恒定律、导致高维可积分映射的周期性降维及其劳伦特性质。此外,我们还考虑了更高的 Gel'fand-Dikii 格系、其周期性还原和劳伦特性质。作为一种特殊的应用,我们从三线性布辛斯基递推以及由三个双线性递推组成的更高的 Gel'fand-Dikii 系统中,建立了类似索莫斯的整数序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信