{"title":"Hard Thermal Loop—Theory and applications","authors":"Najmul Haque , Munshi G. Mustafa","doi":"10.1016/j.ppnp.2024.104136","DOIUrl":null,"url":null,"abstract":"<div><p>In this review, we present the key aspects of modern thermal perturbation theory based on the hard thermal loop (HTL) approximation, including its theoretical foundations and applications within quantum electrodynamics (QED) and quantum chromodynamics (QCD) plasmas. To maintain conciseness, we focus on scenarios in thermal equilibrium, examining a variety of physical quantities and settings. Specifically, we explore both bulk thermodynamic properties and real-time observables in high-temperature domains relevant to heavy-ion physics.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"140 ","pages":"Article 104136"},"PeriodicalIF":14.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641024000401","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
In this review, we present the key aspects of modern thermal perturbation theory based on the hard thermal loop (HTL) approximation, including its theoretical foundations and applications within quantum electrodynamics (QED) and quantum chromodynamics (QCD) plasmas. To maintain conciseness, we focus on scenarios in thermal equilibrium, examining a variety of physical quantities and settings. Specifically, we explore both bulk thermodynamic properties and real-time observables in high-temperature domains relevant to heavy-ion physics.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.