Investigation of microstructural and thermal stability of Ni-Y-Zr ternary nanocrystalline alloy

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
{"title":"Investigation of microstructural and thermal stability of Ni-Y-Zr ternary nanocrystalline alloy","authors":"","doi":"10.1016/j.matchar.2024.114378","DOIUrl":null,"url":null,"abstract":"<div><p>This investigation focused on the thermal stability of nanocrystalline (NC) binary and ternary Ni-Y-Zr alloys synthesized through ball-milling. The microstructural changes following annealing, conducted up to 1200 °C, were studied using various techniques, including X-ray-line-broadening, micro-hardness, and transmission electron microscopy. The results revealed that the rate of grain growth observed in the Ni-Y-Zr ternary alloy at 600 °C resembled that in pure NC-Ni at 100 °C. Moreover, the Ni-1.4Y-1.1Zr ternary system exhibited a maximum hardness of 753 HV (average) at 600 °C, which was approximately 60 HV higher than the Ni-1.2Y/1.9Y and Ni-1.5Zr/2.7Zr binary alloys and more than double that of pure NC-Ni for similar grain sizes. These characteristics were linked to the formation of nano-sized oxides and nitrides of Y and Zr within the microstructure. In summary, this study emphasizes the notable high-temperature microstructure stability of Ni-based ternary alloys, attributed to the additive effects of Y and Zr. Due to this extended stability, this ternary system could find potential applications at elevated temperatures in areas such as jet engine turbine blades and power plants.</p></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324007599","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation focused on the thermal stability of nanocrystalline (NC) binary and ternary Ni-Y-Zr alloys synthesized through ball-milling. The microstructural changes following annealing, conducted up to 1200 °C, were studied using various techniques, including X-ray-line-broadening, micro-hardness, and transmission electron microscopy. The results revealed that the rate of grain growth observed in the Ni-Y-Zr ternary alloy at 600 °C resembled that in pure NC-Ni at 100 °C. Moreover, the Ni-1.4Y-1.1Zr ternary system exhibited a maximum hardness of 753 HV (average) at 600 °C, which was approximately 60 HV higher than the Ni-1.2Y/1.9Y and Ni-1.5Zr/2.7Zr binary alloys and more than double that of pure NC-Ni for similar grain sizes. These characteristics were linked to the formation of nano-sized oxides and nitrides of Y and Zr within the microstructure. In summary, this study emphasizes the notable high-temperature microstructure stability of Ni-based ternary alloys, attributed to the additive effects of Y and Zr. Due to this extended stability, this ternary system could find potential applications at elevated temperatures in areas such as jet engine turbine blades and power plants.

镍-钇-锌三元纳米晶合金的微观结构和热稳定性研究
这项研究的重点是通过球磨合成的纳米晶(NC)二元和三元镍-钇-锌合金的热稳定性。采用各种技术,包括 X 射线线宽、显微硬度和透射电子显微镜,研究了最高温度为 1200 ℃ 的退火后的微观结构变化。结果显示,在 600 ℃ 时观察到的 Ni-Y-Zr 三元合金的晶粒长大速度与 100 ℃ 时纯 NC-Ni 的晶粒长大速度相似。此外,Ni-1.4Y-1.1Zr 三元体系在 600 ℃ 时的最大硬度为 753 HV(平均值),比 Ni-1.2Y/1.9Y 和 Ni-1.5Zr/2.7Zr 二元合金高出约 60 HV,在晶粒尺寸相似的情况下,比纯 NC-Ni 高出一倍多。这些特征与微结构中形成的纳米级 Y 和 Zr 氧化物和氮化物有关。总之,本研究强调了镍基三元合金显著的高温微观结构稳定性,这归因于 Y 和 Zr 的添加效应。由于这种扩展的稳定性,这种三元体系可在高温下应用于喷气发动机涡轮叶片和发电厂等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信