Flammability and thermal analysis of vertically oriented polyvinyl alcohol/DOPO derivative/MXene composite aerogel

IF 6.3 2区 化学 Q1 POLYMER SCIENCE
Ying Zhou , Weidi He , Jiling Song , Dinghong Xu , Hongmin Wu , Jianbing Guo
{"title":"Flammability and thermal analysis of vertically oriented polyvinyl alcohol/DOPO derivative/MXene composite aerogel","authors":"Ying Zhou ,&nbsp;Weidi He ,&nbsp;Jiling Song ,&nbsp;Dinghong Xu ,&nbsp;Hongmin Wu ,&nbsp;Jianbing Guo","doi":"10.1016/j.polymdegradstab.2024.111006","DOIUrl":null,"url":null,"abstract":"<div><p>The fabrication of ultralight high-performance flame-retardant composites significantly reduces fire risk for buildings. Flame retardation of porous polyvinyl alcohol (PVA) aerogels with directional arrangement is difficult. Herein, the polyvinyl alcohol/ 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/two-dimensional (2D) MXene (PVA/DiDOPO/MXene) composite aerogel was prepared by ice template one-way freezing process. PVA-DiDOPO4 composite aerogel with an oriented porous structure reaches the V-1 level at the UL-94 test. Moreover, the peak heat release rate (pHRR) value of PVA-DiDOPO4 reduces to 452.26 (W/g) from 482.88 (W/g) of pure PVA. In addition, PVA/DiDOPO/MXene composite aerogel has improved thermal decomposition properties such as the maximum decomposition temperature (T<sub>max1</sub>) of the PVA-DiDOPO4 sample attains 319.92 °C from pure PVA of 302.90 °C. The design strategy of PVA combined 2D MXene nanosheet and DOPO derivatives construct oriented porous composite aerogel paves the way for the fabrication and customization of ultralight flame-retardant polymer composites, which can be expected to be applied in construction and reduce fire risk.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 111006"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024003501","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The fabrication of ultralight high-performance flame-retardant composites significantly reduces fire risk for buildings. Flame retardation of porous polyvinyl alcohol (PVA) aerogels with directional arrangement is difficult. Herein, the polyvinyl alcohol/ 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/two-dimensional (2D) MXene (PVA/DiDOPO/MXene) composite aerogel was prepared by ice template one-way freezing process. PVA-DiDOPO4 composite aerogel with an oriented porous structure reaches the V-1 level at the UL-94 test. Moreover, the peak heat release rate (pHRR) value of PVA-DiDOPO4 reduces to 452.26 (W/g) from 482.88 (W/g) of pure PVA. In addition, PVA/DiDOPO/MXene composite aerogel has improved thermal decomposition properties such as the maximum decomposition temperature (Tmax1) of the PVA-DiDOPO4 sample attains 319.92 °C from pure PVA of 302.90 °C. The design strategy of PVA combined 2D MXene nanosheet and DOPO derivatives construct oriented porous composite aerogel paves the way for the fabrication and customization of ultralight flame-retardant polymer composites, which can be expected to be applied in construction and reduce fire risk.

垂直定向聚乙烯醇/DOPO 衍生物/二甲苯复合气凝胶的可燃性和热分析
超轻高性能阻燃复合材料的制造大大降低了建筑物的火灾风险。定向排列的多孔聚乙烯醇(PVA)气凝胶的阻燃性能很难实现。本文采用冰模板单向冷冻工艺制备了聚乙烯醇/9,10-二氢-9-氧杂-10-磷菲-10-氧化物衍生物/二维(2D)MXene(PVA/DiDOPO/MXene)复合气凝胶。具有定向多孔结构的 PVA-DiDOPO4 复合气凝胶在 UL-94 试验中达到了 V-1 级。此外,PVA-DiDOPO4 的峰值热释放率(pHRR)值从纯 PVA 的 482.88(W/g)降至 452.26(W/g)。此外,PVA/DiDOPO/MXene 复合气凝胶的热分解性能也有所改善,例如 PVA-DiDOPO4 样品的最大分解温度(Tmax1)从纯 PVA 的 302.90 ℃ 降至 319.92 ℃。PVA结合二维MXene纳米片和DOPO衍生物构建取向多孔复合气凝胶的设计策略为超轻阻燃聚合物复合材料的制造和定制铺平了道路,有望应用于建筑领域并降低火灾风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Degradation and Stability
Polymer Degradation and Stability 化学-高分子科学
CiteScore
10.10
自引率
10.20%
发文量
325
审稿时长
23 days
期刊介绍: Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology. Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal. However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信