{"title":"Fission fragment spectroscopy of 235U(nth,f)","authors":"","doi":"10.1016/j.nuclphysa.2024.122962","DOIUrl":null,"url":null,"abstract":"<div><p>Simultaneous measurements of the relative fission fragment charge and mass yield distributions have been performed for the even-even fission fragments produced from the reaction, <sup>235</sup>U(<span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></math></span>,<em>f</em>). The measurements have been carried out using the conventional fission fragment spectroscopic technique. The extracted results are interpreted on the basis of the Multi-Modal Random Neck Rupture Model (MM-RNRM). The results from the analysis bring out the necessary experimental evidence for the influence of the deformed proton shell closures at <em>Z</em> = 52 and ∼ 56 along with the neutron shell closures at <em>N</em> = 82 (spherical) and 88 (deformed) in controlling the respective S1 and S2 fission modes occurring in the heavier group of asymmetric fission fragments. The new findings from the present investigation provide the crucial inputs for understanding the features of different fission modes that persist in the low-energy fission dynamics of the lighter actinides. The pair wise neutron multiplicity distribution profiles for the five correlated fission fragment pairs have been presented, and the corresponding extracted neutron multiplicity values are also reported.</p></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0375947424001441/pdfft?md5=6ff53ad955ffaef39515e34c396f0a7f&pid=1-s2.0-S0375947424001441-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947424001441","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Simultaneous measurements of the relative fission fragment charge and mass yield distributions have been performed for the even-even fission fragments produced from the reaction, 235U(,f). The measurements have been carried out using the conventional fission fragment spectroscopic technique. The extracted results are interpreted on the basis of the Multi-Modal Random Neck Rupture Model (MM-RNRM). The results from the analysis bring out the necessary experimental evidence for the influence of the deformed proton shell closures at Z = 52 and ∼ 56 along with the neutron shell closures at N = 82 (spherical) and 88 (deformed) in controlling the respective S1 and S2 fission modes occurring in the heavier group of asymmetric fission fragments. The new findings from the present investigation provide the crucial inputs for understanding the features of different fission modes that persist in the low-energy fission dynamics of the lighter actinides. The pair wise neutron multiplicity distribution profiles for the five correlated fission fragment pairs have been presented, and the corresponding extracted neutron multiplicity values are also reported.
期刊介绍:
Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.