Harnessing Leptolyngbya for antiproliferative and antimicrobial metabolites through lens of modern techniques: A review

IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Harnessing Leptolyngbya for antiproliferative and antimicrobial metabolites through lens of modern techniques: A review","authors":"","doi":"10.1016/j.algal.2024.103702","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer and antimicrobial resistance are pressing global health concerns, with cancer ranking as a foremost reason of death across the world, estimated to be about 10 million in 2020, while antimicrobial resistance (AMR) poses a significant threat, with projected deaths attributed to AMR set to exceed 10 million by 2050. Recent research has highlighted Actinomyces, Bacteroidetes, Proteobacteria, and Cyanobacteria as promising sources of therapeutic compounds. Among cyanobacteria, the genus <em>Leptolyngbya</em> has garnered relatively less attention. <em>Leptolyngbya</em> is a polyphyletic in nature and widely distributed across various ecosystems. Although over 140 species have been identified within this genus, its systematic position has only recently been clarified. <em>Leptolyngbya</em>'s diverse metabolite spectrum, including compounds with antioxidant, antimicrobial, and antiproliferative properties, as discussed in this review, makes it a valuable candidate for drug discovery. However, challenges in laboratory cultivation have hindered the identification of novel metabolites from <em>Leptolyngbya</em>, which would have been otherwise discovered. Hence, this article focuses on the antiproliferative and antimicrobial activities of the diverse genus <em>Leptolyngbya</em>, as well as the cutting-edge technologies that have the potential to expand the untapped metabolite spectrum of the genus.</p></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221192642400314X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer and antimicrobial resistance are pressing global health concerns, with cancer ranking as a foremost reason of death across the world, estimated to be about 10 million in 2020, while antimicrobial resistance (AMR) poses a significant threat, with projected deaths attributed to AMR set to exceed 10 million by 2050. Recent research has highlighted Actinomyces, Bacteroidetes, Proteobacteria, and Cyanobacteria as promising sources of therapeutic compounds. Among cyanobacteria, the genus Leptolyngbya has garnered relatively less attention. Leptolyngbya is a polyphyletic in nature and widely distributed across various ecosystems. Although over 140 species have been identified within this genus, its systematic position has only recently been clarified. Leptolyngbya's diverse metabolite spectrum, including compounds with antioxidant, antimicrobial, and antiproliferative properties, as discussed in this review, makes it a valuable candidate for drug discovery. However, challenges in laboratory cultivation have hindered the identification of novel metabolites from Leptolyngbya, which would have been otherwise discovered. Hence, this article focuses on the antiproliferative and antimicrobial activities of the diverse genus Leptolyngbya, as well as the cutting-edge technologies that have the potential to expand the untapped metabolite spectrum of the genus.

从现代技术的角度利用莱普多盎格鲁植物的抗增殖和抗菌代谢物:综述
癌症和抗菌药耐药性是全球紧迫的健康问题,癌症是全球最主要的死亡原因,预计到 2020 年将有约 1,000 万人死于癌症,而抗菌药耐药性(AMR)则构成了重大威胁,预计到 2050 年,因抗菌药耐药性而死亡的人数将超过 1,000 万人。最近的研究突出表明,放线菌、类杆菌、蛋白细菌和蓝藻是很有希望的治疗化合物来源。在蓝藻中,蓝藻属(Leptolyngbya)受到的关注相对较少。蓝藻属(Leptolyngbya)具有多型性,广泛分布于各种生态系统中。虽然该属已发现 140 多个物种,但其系统定位直到最近才得到明确。如本综述所述,Leptolyngbya 的代谢产物种类繁多,包括具有抗氧化、抗菌和抗增殖特性的化合物,这使其成为药物发现的重要候选者。然而,实验室培植方面的挑战阻碍了从莱普多ngbya中鉴定新的代谢物,而这些代谢物本来是可以被发现的。因此,本文将重点介绍 Leptolyngbya 属多种多样的抗增殖和抗菌活性,以及有可能扩大该属未开发代谢物谱的前沿技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algal Research-Biomass Biofuels and Bioproducts
Algal Research-Biomass Biofuels and Bioproducts BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
9.40
自引率
7.80%
发文量
332
期刊介绍: Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信