Analysis of α-fractal functions without boundary point conditions on the Sierpiński gasket

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Gurubachan , V.V.M.S. Chandramouli , S. Verma
{"title":"Analysis of α-fractal functions without boundary point conditions on the Sierpiński gasket","authors":"Gurubachan ,&nbsp;V.V.M.S. Chandramouli ,&nbsp;S. Verma","doi":"10.1016/j.amc.2024.129072","DOIUrl":null,"url":null,"abstract":"<div><p>This note aims to manifest the existence of a class of <em>α</em>-fractal interpolation functions (<em>α</em>-FIFs) without boundary point conditions at the <em>m</em>-th level in the space consisting of continuous functions on the Sierpiński gasket (<em>SG</em>). Furthermore, we add the existence of the same class in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> space and energy space on <em>SG</em>. Under certain hypotheses, we show the existence of <em>α</em>-FIFs without boundary point conditions in the Hölder space and oscillation space on <em>SG</em>, and also calculate the fractal dimensions of their graphs.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005332","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This note aims to manifest the existence of a class of α-fractal interpolation functions (α-FIFs) without boundary point conditions at the m-th level in the space consisting of continuous functions on the Sierpiński gasket (SG). Furthermore, we add the existence of the same class in the Lp space and energy space on SG. Under certain hypotheses, we show the existence of α-FIFs without boundary point conditions in the Hölder space and oscillation space on SG, and also calculate the fractal dimensions of their graphs.

西尔皮斯基垫圈上无边界点条件的 α 分形函数分析
本论文旨在证明在西尔潘斯基垫圈(SG)上由连续函数组成的空间中,存在一类在第 m 层上不带边界点条件的 α 分形插值函数(α-FIFs)。此外,我们还补充说明了在 SG 上的 Lp 空间和能量空间中存在同一类函数。在一定的假设条件下,我们证明了赫尔德空间和 SG 上振荡空间中无边界点条件的 α-FIFs 的存在,并计算了它们图形的分形维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信