Hepeng Jia , Kai Wu , Rongqing Liang , Rongjian Tai , Fengkun Li
{"title":"An improved numerical model of high-speed friction stir welding using a new tool-workpiece slip ratio","authors":"Hepeng Jia , Kai Wu , Rongqing Liang , Rongjian Tai , Fengkun Li","doi":"10.1016/j.cirpj.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><p>The interface slip state of high-speed friction stir welding (HSFSW) is challenging to determine, and accurate boundary conditions cannot be obtained. First, this paper studies the effects of velocity and temperature on the interface slip state, and establishes a new slip coefficient equation. Then, this equation was used to modify the velocity boundary conditions and improve the numerical calculation method of HSFSW. A numerical model of HSFSW was established and validated through experimental data. Finally, the effects of traverse speed and rotational speed on the temperature and void defects of HSFSW were elaborated, and the applicable process parameter range was determined. Specifically, void defects were observed at a rotational speed of 6000 rpm with traverse speeds of 1000 mm/min and 2000 mm/min, while surface peeling occurred at a traverse speed of 3000 mm/min with a rotational speed of 7000 rpm. This study establishes the optimal parameter range for aluminum alloy HSFSW, providing valuable guidance for future industrial applications.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"55 ","pages":"Pages 71-80"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724001482","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The interface slip state of high-speed friction stir welding (HSFSW) is challenging to determine, and accurate boundary conditions cannot be obtained. First, this paper studies the effects of velocity and temperature on the interface slip state, and establishes a new slip coefficient equation. Then, this equation was used to modify the velocity boundary conditions and improve the numerical calculation method of HSFSW. A numerical model of HSFSW was established and validated through experimental data. Finally, the effects of traverse speed and rotational speed on the temperature and void defects of HSFSW were elaborated, and the applicable process parameter range was determined. Specifically, void defects were observed at a rotational speed of 6000 rpm with traverse speeds of 1000 mm/min and 2000 mm/min, while surface peeling occurred at a traverse speed of 3000 mm/min with a rotational speed of 7000 rpm. This study establishes the optimal parameter range for aluminum alloy HSFSW, providing valuable guidance for future industrial applications.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.