Investigation of Optical Interconnects for nano-scale VLSI applications

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
{"title":"Investigation of Optical Interconnects for nano-scale VLSI applications","authors":"","doi":"10.1016/j.micrna.2024.207987","DOIUrl":null,"url":null,"abstract":"<div><p>The relentless trend toward miniaturization has brought interconnects to the brink of communication bottlenecks, operating at or near their ampacity (current carrying capacity) limits. This degradation in performance necessitates novel technologies with increased ampacity. This study explores optical interconnect (OI) as a potential future technology, offering high-bandwidth communication and low latency. This study models and simulates OI, integrating recent optical device advancements with modest modulator and detector capacitance (50 fF). Performance metrics including signal delay, power dissipation, and power-delay-product (PDP) are compared across copper (Cu) and single-wall carbon nanotube bundle (SWCNT-B) interconnects at 22 nm and 14 nm technology nodes. Results consistently show OI, with an active voltage current feedback (AVCF) based regulated gain cascode (RGC) transimpedance amplifier (TIA) receiver, outperforms Cu and SWCNT-B interconnects at global lengths and beyond. For instance, at 1000 μm and 22 nm, OI exhibits 88.47 % and 62.15 % delay improvements over Cu and SWCNT-B, respectively. This trend persists at 14 nm, with OI showing 93.68 % and 84.29 % delay improvements, respectively. Additionally, OI surpasses Cu and SWCNT-B in power efficiency beyond a critical length. As interconnects extend to global scales and beyond, the differences in delay, power, and PDP between OI and electrical interconnect increases, highlighting OI's advantages for future VLSI IC applications.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277301232400236X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The relentless trend toward miniaturization has brought interconnects to the brink of communication bottlenecks, operating at or near their ampacity (current carrying capacity) limits. This degradation in performance necessitates novel technologies with increased ampacity. This study explores optical interconnect (OI) as a potential future technology, offering high-bandwidth communication and low latency. This study models and simulates OI, integrating recent optical device advancements with modest modulator and detector capacitance (50 fF). Performance metrics including signal delay, power dissipation, and power-delay-product (PDP) are compared across copper (Cu) and single-wall carbon nanotube bundle (SWCNT-B) interconnects at 22 nm and 14 nm technology nodes. Results consistently show OI, with an active voltage current feedback (AVCF) based regulated gain cascode (RGC) transimpedance amplifier (TIA) receiver, outperforms Cu and SWCNT-B interconnects at global lengths and beyond. For instance, at 1000 μm and 22 nm, OI exhibits 88.47 % and 62.15 % delay improvements over Cu and SWCNT-B, respectively. This trend persists at 14 nm, with OI showing 93.68 % and 84.29 % delay improvements, respectively. Additionally, OI surpasses Cu and SWCNT-B in power efficiency beyond a critical length. As interconnects extend to global scales and beyond, the differences in delay, power, and PDP between OI and electrical interconnect increases, highlighting OI's advantages for future VLSI IC applications.

纳米级超大规模集成电路应用中的光互连研究
无情的微型化趋势已将互连器件带到了通信瓶颈的边缘,使其工作在安培(电流承载能力)极限或接近极限。性能的下降要求采用具有更高容量的新型技术。本研究探讨了作为未来潜在技术的光互连(OI),它可提供高带宽通信和低延迟。本研究对 OI 进行了建模和仿真,将近期光学设备的进步与适度的调制器和检测器电容(50 fF)整合在一起。在 22 纳米和 14 纳米技术节点上,比较了铜 (Cu) 和单壁碳纳米管束 (SWCNT-B) 互连的性能指标,包括信号延迟、功率耗散和功率-延迟-产品 (PDP)。结果一致表明,采用基于主动电压电流反馈 (AVCF) 的调节增益级联 (RGC) 跨阻抗放大器 (TIA) 接收器的 OI 在全球长度及更长的距离上优于铜和 SWCNT-B 互连。例如,在 1000 μm 和 22 nm 时,OI 比铜和 SWCNT-B 的延迟分别提高了 88.47% 和 62.15%。这一趋势在 14 纳米时依然存在,OI 的延迟分别提高了 93.68% 和 84.29%。此外,OI 在超过临界长度时的功率效率也超过了铜和 SWCNT-B。随着互连扩展到全球尺度及更大范围,OI 与电气互连在延迟、功率和 PDP 方面的差异也会增大,这凸显了 OI 在未来 VLSI 集成电路应用中的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信