A review on defect engineered NIR persistent luminescence through transition metal ion (Cr, Mn, Fe and Ni) doping: Wider perspective covering synthesis, characterization, fundamentals and applications
Reshmi T. Parayil , Santosh K. Gupta , M. Mohapatra
{"title":"A review on defect engineered NIR persistent luminescence through transition metal ion (Cr, Mn, Fe and Ni) doping: Wider perspective covering synthesis, characterization, fundamentals and applications","authors":"Reshmi T. Parayil , Santosh K. Gupta , M. Mohapatra","doi":"10.1016/j.ccr.2024.216200","DOIUrl":null,"url":null,"abstract":"<div><p>Persistent luminescence is an optical phenomenon where materials continue to emit light after the cessation of the excitation source which leads to different applications in areas like bioimaging, information storage, anticounterfeiting, etc. This review focuses on the latest advancements in near-infrared (NIR) persistent luminescence (PersL) materials doped with Cr<sup>3+</sup>, Mn<sup>4+</sup>, Mn<sup>2+</sup>, Fe<sup>3+</sup> and Ni<sup>2+</sup>along with recent advances in the synthesis and mechanisms associated with the afterglow. A comprehensive discussion on the various types of defects and their importance in NIR PersL materials is also included, along with a section dedicated to the techniques used to characterize these defects and application of NIR PersL materials in different areas. The review also examines the different strategies to improve the NIR PersL. It starts with a brief description of the history of the PersL and then discusses the reported NIR PersL phosphors activated by manganese, chromium, iron and nickel ions. Understanding the mechanism associated with PersL is very important to develop a novel PersL phosphor, so the review discussed the role of defects and traps in PersL along with different models which include the conduction band model, oxygen vacancy model, and quantum tunneling model which is followed by few main applications of PersL materials and culminated by concluding and associated challenges and future directions in this ever-growing field.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"522 ","pages":"Article 216200"},"PeriodicalIF":20.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524005460","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Persistent luminescence is an optical phenomenon where materials continue to emit light after the cessation of the excitation source which leads to different applications in areas like bioimaging, information storage, anticounterfeiting, etc. This review focuses on the latest advancements in near-infrared (NIR) persistent luminescence (PersL) materials doped with Cr3+, Mn4+, Mn2+, Fe3+ and Ni2+along with recent advances in the synthesis and mechanisms associated with the afterglow. A comprehensive discussion on the various types of defects and their importance in NIR PersL materials is also included, along with a section dedicated to the techniques used to characterize these defects and application of NIR PersL materials in different areas. The review also examines the different strategies to improve the NIR PersL. It starts with a brief description of the history of the PersL and then discusses the reported NIR PersL phosphors activated by manganese, chromium, iron and nickel ions. Understanding the mechanism associated with PersL is very important to develop a novel PersL phosphor, so the review discussed the role of defects and traps in PersL along with different models which include the conduction band model, oxygen vacancy model, and quantum tunneling model which is followed by few main applications of PersL materials and culminated by concluding and associated challenges and future directions in this ever-growing field.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.