Antimicrobial carbon materials-based quantum dots: From synthesis strategies to antibacterial properties for diagnostic and therapeutic applications in wound healing
Iman Zare , Shima Zahed Nasab , Amid Rahi , Azadeh Ghaee , Morvarid Koohkhezri , Marzieh Ramezani Farani , Hanna Madadi Gholipour , Amir Hossein Atabaki , Michael R. Hamblin , Ebrahim Mostafavi , Heemin Kang
{"title":"Antimicrobial carbon materials-based quantum dots: From synthesis strategies to antibacterial properties for diagnostic and therapeutic applications in wound healing","authors":"Iman Zare , Shima Zahed Nasab , Amid Rahi , Azadeh Ghaee , Morvarid Koohkhezri , Marzieh Ramezani Farani , Hanna Madadi Gholipour , Amir Hossein Atabaki , Michael R. Hamblin , Ebrahim Mostafavi , Heemin Kang","doi":"10.1016/j.ccr.2024.216211","DOIUrl":null,"url":null,"abstract":"<div><p>The emergence of multidrug resistance (MDR) pathogens and the rapid depletion of the antibiotic arsenal have sparked interest in discovering and developing innovative antimicrobial agents. One example of these new agents is antimicrobial nanostructured materials, which have received significant attention due to their intrinsic advantages and unique antibacterial mechanisms. Among such antimicrobial nanomaterials, carbon materials-based quantum dots (QDs), including graphene QDs (GQDs), graphene oxide QDs (GOQDs), and carbon QDs (CQDs), have a competitive edge due to their low cytotoxicity, ease of synthesis and modification, and highly uniform dispersibility in aqueous solutions. Carbon-based QDs can be prepared by “top-down” or “bottom-up” approaches, with tailorable properties and antimicrobial activity. The antibacterial properties of CQDs and GQDs, including ROS generation, bacterial membrane disruption, and interference with genomic DNA, have all been well described. For the first time, this review focuses on the emerging mechanisms for enhancing antibacterial effectiveness, such as antimicrobial phototherapy, enzymatic cascade activity, phytochemical therapy, and synergistic effects in combination with antimicrobial agents and herbal extracts for practical applications in bacterial detection and dressings for bacteria-infected wounds, ocular, periodontal, bone, and implant-related infections. Furthermore, the current challenges of carbon-based QDs are summarized, and their future promise for significantly improving treatment options instead of conventional methods against MDR bacteria is highlighted.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"522 ","pages":"Article 216211"},"PeriodicalIF":20.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524005575","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of multidrug resistance (MDR) pathogens and the rapid depletion of the antibiotic arsenal have sparked interest in discovering and developing innovative antimicrobial agents. One example of these new agents is antimicrobial nanostructured materials, which have received significant attention due to their intrinsic advantages and unique antibacterial mechanisms. Among such antimicrobial nanomaterials, carbon materials-based quantum dots (QDs), including graphene QDs (GQDs), graphene oxide QDs (GOQDs), and carbon QDs (CQDs), have a competitive edge due to their low cytotoxicity, ease of synthesis and modification, and highly uniform dispersibility in aqueous solutions. Carbon-based QDs can be prepared by “top-down” or “bottom-up” approaches, with tailorable properties and antimicrobial activity. The antibacterial properties of CQDs and GQDs, including ROS generation, bacterial membrane disruption, and interference with genomic DNA, have all been well described. For the first time, this review focuses on the emerging mechanisms for enhancing antibacterial effectiveness, such as antimicrobial phototherapy, enzymatic cascade activity, phytochemical therapy, and synergistic effects in combination with antimicrobial agents and herbal extracts for practical applications in bacterial detection and dressings for bacteria-infected wounds, ocular, periodontal, bone, and implant-related infections. Furthermore, the current challenges of carbon-based QDs are summarized, and their future promise for significantly improving treatment options instead of conventional methods against MDR bacteria is highlighted.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.