{"title":"Hydrodynamic solar-driven interfacial evaporation - Gone with the flow","authors":"","doi":"10.1016/j.watres.2024.122432","DOIUrl":null,"url":null,"abstract":"<div><p>Evaporation has been one of the most classic desalination processes on the Earth. When we try to use the power of water flow itself, the evaporation process can perform even better. Here, we report a hydrodynamic solar-driven interfacial evaporation process which water evaporation rate can achieve 6.58 kg·m<sup>-2</sup>·h<sup>-1</sup> (over 100 times higher than natural evaporation). A waterwheel-structure solar interfacial evaporator was designed and assembled by printed filter papers. The evaporator can both rapidly distribute solution on the evaporation interface and be hydraulically driven to rotate continuously to improve the evaporation rate by water flow. The hydrodynamic solar-driven interfacial evaporation process successfully overcomes the problem of slow diffusion of water vapor, but also realizes the day-and-night operation of process and the self-cleaning of salt fouling. Apart from the application in solar desalination, the developed evaporator has great potentials in vapor production and salt recovery for industrial use.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424013319","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Evaporation has been one of the most classic desalination processes on the Earth. When we try to use the power of water flow itself, the evaporation process can perform even better. Here, we report a hydrodynamic solar-driven interfacial evaporation process which water evaporation rate can achieve 6.58 kg·m-2·h-1 (over 100 times higher than natural evaporation). A waterwheel-structure solar interfacial evaporator was designed and assembled by printed filter papers. The evaporator can both rapidly distribute solution on the evaporation interface and be hydraulically driven to rotate continuously to improve the evaporation rate by water flow. The hydrodynamic solar-driven interfacial evaporation process successfully overcomes the problem of slow diffusion of water vapor, but also realizes the day-and-night operation of process and the self-cleaning of salt fouling. Apart from the application in solar desalination, the developed evaporator has great potentials in vapor production and salt recovery for industrial use.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.