Novel two-dimensional conductive metal–organic framework-based heterostructures for high-performance electro-ionic soft actuators†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yingyi Wang, Shengzhao Li, Lin Liu, Simin Feng, Kejie Guan, Yixiang Shi, Fuqin Sun, Xiaowei Wang, Yaochun Shen, Cheng Zhang, Qianzuo Liu, Tie Li, Ting Zhang and Sujie Qin
{"title":"Novel two-dimensional conductive metal–organic framework-based heterostructures for high-performance electro-ionic soft actuators†","authors":"Yingyi Wang, Shengzhao Li, Lin Liu, Simin Feng, Kejie Guan, Yixiang Shi, Fuqin Sun, Xiaowei Wang, Yaochun Shen, Cheng Zhang, Qianzuo Liu, Tie Li, Ting Zhang and Sujie Qin","doi":"10.1039/D4TA04514A","DOIUrl":null,"url":null,"abstract":"<p >Current ionic artificial muscle technology necessitates a significant technological advancement to achieve increased bending strain, enhanced response rates, and prolonged stability while ensuring consistent and reliable performance across various stimuli. In this study, we aimed to develop an artificial muscle based on a novel nanocomposite composed of ionically cross-linked ZnO@Zn-CAT with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), showing an ultrafast rise time of less than 1.56 s in DC responses, an extremely large bending strain up to 1.22% in a very low input voltage regime (0.1 to 3 V), a long-term cycling stability of 97% up to 10 000 cycles, markedly reduced phase delay, and a very broad frequency bandwidth up to 20 Hz with good structural reliability under continuous electrical stimuli. Most importantly, the proposed ZnO@Zn-CAT-based soft actuator exhibits a remarkably enhanced strain of 2.38% and a blocking force of 66 mN under an extra 700 nm light stimulation, allowing for the realization of complex next-generation soft robotic devices, including wearable electronics and artificial muscles.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta04514a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Current ionic artificial muscle technology necessitates a significant technological advancement to achieve increased bending strain, enhanced response rates, and prolonged stability while ensuring consistent and reliable performance across various stimuli. In this study, we aimed to develop an artificial muscle based on a novel nanocomposite composed of ionically cross-linked ZnO@Zn-CAT with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), showing an ultrafast rise time of less than 1.56 s in DC responses, an extremely large bending strain up to 1.22% in a very low input voltage regime (0.1 to 3 V), a long-term cycling stability of 97% up to 10 000 cycles, markedly reduced phase delay, and a very broad frequency bandwidth up to 20 Hz with good structural reliability under continuous electrical stimuli. Most importantly, the proposed ZnO@Zn-CAT-based soft actuator exhibits a remarkably enhanced strain of 2.38% and a blocking force of 66 mN under an extra 700 nm light stimulation, allowing for the realization of complex next-generation soft robotic devices, including wearable electronics and artificial muscles.

Abstract Image

Abstract Image

基于新型二维导电金属有机框架的异质结构,可用于高性能电离子软致动器
目前的离子人工肌肉技术需要重大的技术进步,以实现增加弯曲应变、提高响应速度和延长稳定性,同时确保在各种刺激下性能的一致性和可靠性。在这项研究中,我们旨在开发一种基于离子交联 ZnO@Zn-CAT 与聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)组成的新型纳米复合材料的人工肌肉,在直流响应中显示出小于 1.56 秒的超快上升时间,在极低输入电压下显示出高达 1.22% 的超大弯曲应变。在极低的输入电压条件下(0.1 至 3 V),弯曲应变高达 1.22%;长期循环稳定性高达 97%,最高可达 10 000 次循环;相位延迟明显降低;频率带宽非常宽,最高可达 20 Hz,并且在连续电刺激下具有良好的结构可靠性。最重要的是,所提出的基于 ZnO@Zn-CAT 的软致动器在额外的 700 纳米光刺激下显示出显著增强的应变(2.38%)和 66 毫牛顿的阻挡力,从而可以实现复杂的下一代软机器人设备,包括可穿戴电子设备和人造肌肉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信