Brandon C. McNally, Manoj Chhetri, Aaron J. Patton, Wenwen Liu, Jared A. Hoyle, James T. Brosnan, Michael D. Richardson, Matthew B. Bertucci, Ross C. Braun, Jack D. Fry
{"title":"Optimizing ethephon application timing for ‘Meyer’ zoysiagrass seedhead suppression","authors":"Brandon C. McNally, Manoj Chhetri, Aaron J. Patton, Wenwen Liu, Jared A. Hoyle, James T. Brosnan, Michael D. Richardson, Matthew B. Bertucci, Ross C. Braun, Jack D. Fry","doi":"10.1002/csc2.21350","DOIUrl":null,"url":null,"abstract":"Zoysiagrass (<jats:italic>Zoysia</jats:italic> spp. Willd.) is a desirable, low‐input turfgrass species used on golf courses. However, prolific zoysiagrass seedhead production in the spring can increase golf course maintenance costs and reduce aesthetics. Previous research demonstrates that a single autumn ethephon application can suppress zoysiagrass seedhead production the following spring, but the optimum application timing is not well‐defined. The objective of this research was to determine the optimum window for an effective ethephon application for ‘Meyer’ zoysiagrass seedhead suppression. Small‐plot field research was conducted in Indiana, Kansas, Arkansas, and Tennessee. Seedheads were suppressed up to 99% depending on application timing. In Indiana, applications made on September 19 provided 99% seedhead suppression. In Kansas, applications between August 30 and September 18 yielded >64% seedhead suppression. In Arkansas, applications between October 3 and October 17 yielded >52% seedhead suppression. In Tennessee, applications between September 19 and October 23 provided >78% seedhead suppression. Applications made outside these windows resulted in more seedhead production at each respective location. Interestingly, optimum application timing was approximately 2 weeks later in Arkansas and Tennessee compared to Indiana and Kansas. Using growing degree days, a nonlinear Gaussian model was fit to predict the optimum ethephon application timing. In addition to data from this research, the proposed model accurately predicted observed zoysiagrass seedhead suppression in previously published research. This research better characterizes the optimum autumn application timing for Meyer zoysiagrass seedhead suppression across the transition zone.","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/csc2.21350","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Zoysiagrass (Zoysia spp. Willd.) is a desirable, low‐input turfgrass species used on golf courses. However, prolific zoysiagrass seedhead production in the spring can increase golf course maintenance costs and reduce aesthetics. Previous research demonstrates that a single autumn ethephon application can suppress zoysiagrass seedhead production the following spring, but the optimum application timing is not well‐defined. The objective of this research was to determine the optimum window for an effective ethephon application for ‘Meyer’ zoysiagrass seedhead suppression. Small‐plot field research was conducted in Indiana, Kansas, Arkansas, and Tennessee. Seedheads were suppressed up to 99% depending on application timing. In Indiana, applications made on September 19 provided 99% seedhead suppression. In Kansas, applications between August 30 and September 18 yielded >64% seedhead suppression. In Arkansas, applications between October 3 and October 17 yielded >52% seedhead suppression. In Tennessee, applications between September 19 and October 23 provided >78% seedhead suppression. Applications made outside these windows resulted in more seedhead production at each respective location. Interestingly, optimum application timing was approximately 2 weeks later in Arkansas and Tennessee compared to Indiana and Kansas. Using growing degree days, a nonlinear Gaussian model was fit to predict the optimum ethephon application timing. In addition to data from this research, the proposed model accurately predicted observed zoysiagrass seedhead suppression in previously published research. This research better characterizes the optimum autumn application timing for Meyer zoysiagrass seedhead suppression across the transition zone.
期刊介绍:
Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.