Propagation of insulator-to-metal transition driven by photoinduced strain waves in a Mott material

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Tatsuya Amano, Danylo Babich, Ritwika Mandal, Julio Guzman-Brambila, Alix Volte, Elzbieta Trzop, Marina Servol, Ernest Pastor, Maryam Alashoor, Jörgen Larsson, Andrius Jurgilaitis, Van-Thai Pham, David Kroon, John Carl Ekström, Byungnam Ahn, Céline Mariette, Matteo Levantino, Mikhail Kozhaev, Julien Tranchant, Benoit Corraze, Laurent Cario, Mohammad Dolatabadi, Vinh Ta Phuoc, Rodolphe Sopracase, Mathieu Guillon, Hirotake Itoh, Yohei Kawakami, Yuto Nakamura, Hideo Kishida, Hervé Cailleau, Maciej Lorenc, Shinichiro Iwai, Etienne Janod
{"title":"Propagation of insulator-to-metal transition driven by photoinduced strain waves in a Mott material","authors":"Tatsuya Amano, Danylo Babich, Ritwika Mandal, Julio Guzman-Brambila, Alix Volte, Elzbieta Trzop, Marina Servol, Ernest Pastor, Maryam Alashoor, Jörgen Larsson, Andrius Jurgilaitis, Van-Thai Pham, David Kroon, John Carl Ekström, Byungnam Ahn, Céline Mariette, Matteo Levantino, Mikhail Kozhaev, Julien Tranchant, Benoit Corraze, Laurent Cario, Mohammad Dolatabadi, Vinh Ta Phuoc, Rodolphe Sopracase, Mathieu Guillon, Hirotake Itoh, Yohei Kawakami, Yuto Nakamura, Hideo Kishida, Hervé Cailleau, Maciej Lorenc, Shinichiro Iwai, Etienne Janod","doi":"10.1038/s41567-024-02628-4","DOIUrl":null,"url":null,"abstract":"Ultrafast photoexcitation can generate internal compressive stress in Mott insulators that lead to strain waves from free surfaces. These photoinduced elastic waves can trigger phase transitions in materials. However, a comprehensive physical picture of the phase transformation dynamics that includes acoustic-scale propagation has not yet been developed. Here we demonstrate that such a strain-wave mechanism drives the ultrafast insulator-to-metal phase transition in granular thin films of the Mott material V2O3. Our time-resolved optical reflectivity and X-ray diffraction measurements reveal that an inverse ferroelastic shear occurs before the insulator-to-metal transition, which propagates in the wake of a compressive strain wave. These dynamics are governed by the domain size and film thickness, respectively. Our results clarify the morphological conditions for the ultrafast phase transition that is favoured in granular thin films and hindered in single crystals. The resulting physical picture sheds light on the ultrafast phase transitions in quantum materials and future devices based on Mott insulators. The mechanism behind the ultrafast insulator-to-metal transition in Mott materials is still not well understood. Now, it is shown that this phase transition propagates along the pathway of a photoinduced compressive strain wave in prototypical V2O3.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1778-1785"},"PeriodicalIF":17.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02628-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast photoexcitation can generate internal compressive stress in Mott insulators that lead to strain waves from free surfaces. These photoinduced elastic waves can trigger phase transitions in materials. However, a comprehensive physical picture of the phase transformation dynamics that includes acoustic-scale propagation has not yet been developed. Here we demonstrate that such a strain-wave mechanism drives the ultrafast insulator-to-metal phase transition in granular thin films of the Mott material V2O3. Our time-resolved optical reflectivity and X-ray diffraction measurements reveal that an inverse ferroelastic shear occurs before the insulator-to-metal transition, which propagates in the wake of a compressive strain wave. These dynamics are governed by the domain size and film thickness, respectively. Our results clarify the morphological conditions for the ultrafast phase transition that is favoured in granular thin films and hindered in single crystals. The resulting physical picture sheds light on the ultrafast phase transitions in quantum materials and future devices based on Mott insulators. The mechanism behind the ultrafast insulator-to-metal transition in Mott materials is still not well understood. Now, it is shown that this phase transition propagates along the pathway of a photoinduced compressive strain wave in prototypical V2O3.

Abstract Image

Abstract Image

莫特材料中由光诱导应变波驱动的绝缘体到金属转变的传播
超快光激发可在莫特绝缘体中产生内部压应力,导致自由表面产生应变波。这些光诱导弹性波可引发材料的相变。然而,关于相变动力学(包括声学尺度传播)的全面物理图景尚未形成。在这里,我们证明了这种应变波机制驱动了莫特材料 V2O3 颗粒薄膜中从绝缘体到金属的超快相变。我们的时间分辨光学反射率和 X 射线衍射测量结果表明,在绝缘体到金属的转变之前会发生反铁弹性剪切,这种剪切在压缩应变波之后传播。这些动态分别受域尺寸和薄膜厚度的制约。我们的研究结果阐明了超快相变的形态条件,这种相变在粒状薄膜中有利而在单晶体中受阻。由此得出的物理图景揭示了量子材料中的超快相变以及未来基于莫特绝缘体的设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信