Harmonic‐Assisted Super‐Resolution Rotational Measurement

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Zhenyu Guo, Jiawei Wang, Weihua Zhao, Hong Gao, Zehong Chang, Yunlong Wang, Pei Zhang
{"title":"Harmonic‐Assisted Super‐Resolution Rotational Measurement","authors":"Zhenyu Guo, Jiawei Wang, Weihua Zhao, Hong Gao, Zehong Chang, Yunlong Wang, Pei Zhang","doi":"10.1002/lpor.202401050","DOIUrl":null,"url":null,"abstract":"Enhancing rotational measurement resolution and broadening the detectable spectral range are two critical and unresolved matters within the realm of motion perception. The rotational Doppler effect (RDE) is combined with the harmonic generation process to create a rotational measurement scheme that offers flexible detection wavelength conversion, exponential improvement of measurement resolution, and real‐time display of detection results. In the experiments, a cascaded second harmonic generation process is employed to attain a fourfold enhancement in rotational resolution and demonstrate how low‐cost silicon‐based detectors can be used for real‐time detection of infrared objects. This scheme employs a Gaussian beam within the nonlinear process to achieve high conversion efficiency, thereby enabling potential for subsequent cascade amplification. Additionally, it is fully compatible with existing RDE schemes, allowing for co‐amplification of rotational resolution at both the front‐end and back‐end. This research could offer a more precise and cost‐effective method for remote sensing detection.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401050","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing rotational measurement resolution and broadening the detectable spectral range are two critical and unresolved matters within the realm of motion perception. The rotational Doppler effect (RDE) is combined with the harmonic generation process to create a rotational measurement scheme that offers flexible detection wavelength conversion, exponential improvement of measurement resolution, and real‐time display of detection results. In the experiments, a cascaded second harmonic generation process is employed to attain a fourfold enhancement in rotational resolution and demonstrate how low‐cost silicon‐based detectors can be used for real‐time detection of infrared objects. This scheme employs a Gaussian beam within the nonlinear process to achieve high conversion efficiency, thereby enabling potential for subsequent cascade amplification. Additionally, it is fully compatible with existing RDE schemes, allowing for co‐amplification of rotational resolution at both the front‐end and back‐end. This research could offer a more precise and cost‐effective method for remote sensing detection.
谐波辅助超分辨率旋转测量
提高旋转测量分辨率和扩大可探测光谱范围是运动感知领域两个关键的未决问题。旋转多普勒效应(RDE)与谐波发生过程相结合,创建了一种旋转测量方案,可提供灵活的检测波长转换、指数级的测量分辨率改进以及检测结果的实时显示。在实验中,采用了级联二次谐波发生过程,使旋转分辨率提高了四倍,并演示了如何利用低成本硅基探测器对红外物体进行实时检测。该方案在非线性过程中采用了高斯光束,以实现高转换效率,从而为后续级联放大提供了可能。此外,它与现有的 RDE 方案完全兼容,允许在前端和后端共同放大旋转分辨率。这项研究可为遥感探测提供一种更精确、更具成本效益的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信