Brain-inspired Multimodal Synaptic Memory via Mechano-photonic Plasticized Asymmetric Ferroelectric Heterostructure

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jie Gong, Yichen Wei, Yifei Wang, Zhenyu Feng, Jinran Yu, Liuqi Cheng, Mingxia Chen, Linlin Li, Zhong Lin Wang, Qijun Sun
{"title":"Brain-inspired Multimodal Synaptic Memory via Mechano-photonic Plasticized Asymmetric Ferroelectric Heterostructure","authors":"Jie Gong, Yichen Wei, Yifei Wang, Zhenyu Feng, Jinran Yu, Liuqi Cheng, Mingxia Chen, Linlin Li, Zhong Lin Wang, Qijun Sun","doi":"10.1002/adfm.202408435","DOIUrl":null,"url":null,"abstract":"Neuromorphic devices capable of emulating biological synaptic behaviors are crucial for implementing brain-like information processing and computing. Emerging 2D ferroelectric neuromorphic devices provide an effective means of updating synaptic weight aside from conventional electrical/optical modulations. Here, by further synergizing with an energy-efficient synaptic plasticity strategy, a multimodal mechano-photonic synaptic memory device based on 2D asymmetric ferroelectric heterostructure is presented, which can be modulated by external mechanical behavior and light illumination. By integrating the asymmetric ferroelectric heterostructured field-effect transistor and a triboelectric nanogenerator, the mechanical displacement-derived triboelectric potential is ready for gating, programming, and plasticizing the synaptic device, resulting in superior electrical properties of high on/off ratios (&gt; 10<sup>7</sup>), large storage windows (equivalent to ≈95 V), excellent charge retention capability (&gt; 10<sup>4</sup> s), good endurance (&gt; 10<sup>3</sup> cycles), and primary synaptic behaviors. Besides, optical illumination can effectively synergize with mechanoplasticity to implement multimodal spatiotemporally correlated dynamic logic. The demonstrated multimodal memory synapse provides a facile and promising strategy for multifunctional sensory memory, interactive neuromorphic devices, and future brain-like electronics embodying artificial intelligence.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202408435","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic devices capable of emulating biological synaptic behaviors are crucial for implementing brain-like information processing and computing. Emerging 2D ferroelectric neuromorphic devices provide an effective means of updating synaptic weight aside from conventional electrical/optical modulations. Here, by further synergizing with an energy-efficient synaptic plasticity strategy, a multimodal mechano-photonic synaptic memory device based on 2D asymmetric ferroelectric heterostructure is presented, which can be modulated by external mechanical behavior and light illumination. By integrating the asymmetric ferroelectric heterostructured field-effect transistor and a triboelectric nanogenerator, the mechanical displacement-derived triboelectric potential is ready for gating, programming, and plasticizing the synaptic device, resulting in superior electrical properties of high on/off ratios (> 107), large storage windows (equivalent to ≈95 V), excellent charge retention capability (> 104 s), good endurance (> 103 cycles), and primary synaptic behaviors. Besides, optical illumination can effectively synergize with mechanoplasticity to implement multimodal spatiotemporally correlated dynamic logic. The demonstrated multimodal memory synapse provides a facile and promising strategy for multifunctional sensory memory, interactive neuromorphic devices, and future brain-like electronics embodying artificial intelligence.

Abstract Image

通过机械光子可塑非对称铁电异质结构实现脑启发式多模态突触记忆
能够模拟生物突触行为的神经形态器件对于实现类脑信息处理和计算至关重要。除了传统的电/光调制外,新兴的二维铁电神经形态设备为更新突触权重提供了有效手段。在这里,通过与高能效的突触可塑性策略进一步协同,介绍了一种基于二维非对称铁电异质结构的多模态机械光子突触记忆装置,它可以通过外部机械行为和光照进行调制。通过整合非对称铁电异质结构场效应晶体管和三电纳米发生器,机械位移产生的三电势可用于突触器件的门控、编程和塑化,从而实现高通断比(107)、大存储窗口(相当于≈95 V)、优异的电荷保持能力(104 s)、良好的耐久性(103 个周期)和主要突触行为等卓越的电学特性。此外,光照可与机械塑性有效协同,实现多模态时空相关动态逻辑。所展示的多模态记忆突触为多功能感官记忆、交互式神经形态设备以及未来体现人工智能的类脑电子设备提供了一种简便而有前景的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信